期刊文献+

基于全方位和多尺度结构元数学形态学的木材缺陷图像边缘检测 被引量:1

Edge Detection of Wood Defect Image Based on Mathematical Morphology of Omni Directional Multi-scale Element Algorithm
下载PDF
导出
摘要 提出一种基于全方位、多尺度结构元的数学形态学图像边缘检测算法。针对图像中噪声和边缘形态不同,定义了全方位、多尺度的形态学结构元素,并通过形态学运算的加权组合,构造了全方位、多尺度的边缘检测算法。在针对木材缺陷图像的仿真实验中,该方法与经典的边缘检测算子相比不仅具有很好的边缘提取能力,而且有很强的抗噪性。 Based on the mathematical morphology of omni directional multi-scale element, an algorithm of image edge detection was proposed in this paper. Mathematical morphology of omni directional multi-scale dement was defined in order to suppress noise and adapt to different edges in the image. An approach of image edge detection based on the morphology of omni directional multi-scale element was constructed by weight adding combination of morphological operation. The results of simulation demonstrate of wood defect images showed that the method performed better not only in edge detection but also in noise-suppression than classical edge detection operators.
作者 郭凡 戚大伟
机构地区 东北林业大学
出处 《森林工程》 2007年第6期28-30,共3页 Forest Engineering
关键词 数学形态学 边缘检测 结构元素 木材检测 mathematical morphology edge detection structure dements wood detection
  • 相关文献

参考文献3

二级参考文献23

  • 1陈虎,王守尊,周朝辉.基于数学形态学的图像边缘检测方法研究[J].工程图学学报,2004,25(2):112-115. 被引量:39
  • 2饶海涛,翁桂荣.基于数学形态学的图像边缘检测[J].苏州大学学报(自然科学版),2004,20(2):42-45. 被引量:23
  • 3闫德俊,孙杰.一种改进的金相图像处理自适应加权均值滤波方法[J].辽宁石油化工大学学报,2005,25(4):58-61. 被引量:6
  • 4章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 5SERRA J. Image analysis and mathematical morphology [M]. London: Academic Press, 1982.
  • 6HO C P, CHIN R T. Decomposition of arbitrarily shaped morphological structuring elements[J]. IEEE Trans PAMI, 1995, 17(1): 2-15.
  • 7SONG J, DELPE J. The analysis of morphological filters with multiple structuring elements [J]. Comp Vis Graphics -Image Proces, 1990, 50: 308-328.
  • 8SCHONFELD D. Optimal structuring elements for the morphological pattern restoration of binary images [J].IEEE Trans on PAMI, 1994, 16(6): 589-601.
  • 9BHATTACHARYA P, ZHU W, QIAN K. Shape recognition method using morphological hit-or-miss transform [J]. Opt Engin, 1995, 34(6): 1725-1728.
  • 10LEE C K, WONG S P. A mathematical morphological approach for segmenting heavily noise corrupted images[J]. Pat Recog, 1996, 29(8): 1347-1358.

共引文献33

同被引文献10

  • 1业宁,王厚立,徐兆军,丁建文.基于支持向量机的木材缺陷识别[J].计算机应用与软件,2006,23(4):3-5. 被引量:10
  • 2邹丽晖,白雪冰.图像分割技术在木材表面缺陷识别中的应用[J].森林工程,2007,23(1):27-29. 被引量:14
  • 3DANIEL L S, ZHU Dong-ping, RICHARD W C. Non-destructive evaluation of hardwood logs using automated interpretation of CT images [ M ]//THOMPSON D O, CHIM- ENTI D E. Review of progress in quantitative nondestructive evaluation: Vol. 12. New York: Plenum Press, 1993:2257-2264.
  • 4SUGIMORI M. Recognition of tangential knot area by light reflection and image processing [ J ]. Moknzai Gakkaishi, 1994, 40(8) :795-800 .
  • 5IWASAKI S, SADOH T. Measurements of knots in hinoki and sugi lumbers by the optical scanning method [ J ]. Mokuzai Gakkaishi, 1991, 37 ( 11 ) : 999-1003.
  • 6SADOH T, MURATA K. Detection of knots in hinoki and karamatsu lumber by thermograph [ J ]. Mokuzai Gakkai- shi, 1993, 39(1) : 13-19.
  • 7EARL K D, AGUS W, JANICE K W, et al. Performance of color camera machine vision in automated furniture rough mill system[J]. Forest Prod J, 1998, 48 (3) :38- 45.
  • 8LEE S M, ABBOT A L, DANIEL L S. Wane detection on rough lumber using surface approximation [ C ] //KLINE D E. Proceedings of 4th International Conference on Image Processing and Scanning of Wood. Asheville, NC : Southern Research Station, 2000 : 115-126.
  • 9OSAKI H, TOKUNAGA S, SAKO Y, et al. Method to determine grade of timber using image processing technique [ J]. Nihon Kikai Gakkai Ronbunshu: C, 1994, 60 (573): 1862-1868 .
  • 10OTSU N. An automatic threshold selection method based on discriminate and least squares criteria [ J]. Denshi Tsushin Gakkai Ronbunshi, 1979,63 ( 4 ) : 349-356.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部