期刊文献+

轨道刚度对路轨系统及饱和地基动力响应的影响 被引量:16

Effect of rail rigidity on track-ground vibration due to a high-speed train
下载PDF
导出
摘要 研究了轨道刚度对高速移动列车荷载作用下铁路系统动力响应的影响。将钢轨简化为无限长弹性Euler梁,将枕木简化为连续质量块,同时考虑道渣层的影响。由Fourier变换求解多孔饱和固体的动力基本方程,在Fourier变换域内,联立铁路系统和下卧土体的动力方程,求解列车荷载作用下钢轨位移、加速度、土体位移、孔压表达式。利用数值积分方法对表达式进行Fourier逆变换,得到钢轨位移、加速度、孔压在时域内的表达式。算例中主要讨论了荷载移动速度和轨道刚度对钢轨速度、加速度及土体孔压的影响。结果表明,轨道刚度在低速情况下对路轨系统和土体动力响应有影响较小,但在高速情况下对路轨系统和土体动力响应影响很大。 An analytical approach was used to investigate the effect of the rail rigidity on track vibration due to a high speed moving train. The rails were described by introducing the Green function for an infinitely long Euler beam, the sleepers were represented by a mass, and the ballast was placed under the sleepers. By employing the double Fourier transforms, the governing equations of motion were solved in the frequency-wave-number domain. The time domain responses were evaluated by the inverse Fourier transform computation. It was shown that dynamic responses of the soil medium were considerably affected by the rail rigidity when the velocity of train was high.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2007年第12期1787-1793,共7页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金资助项目(50478081)
关键词 BIOT波动方程 铁路系统 两相介质 列车荷载 Biot theory railway system poroelasticity train load
  • 相关文献

参考文献15

  • 1KENNEDY T C, HERRMANN G Moving load on a fluid-solid interface:subsonic and intersonic regimes[J]. Journal of Applied Mechanics, 1973, 40:885 - 890.
  • 2KENNEDY T C, HERRMANN G Moving load on a fluid-solid interface:supersonic regimes[J]. Journal of Applied Mechanics, 1973, 40: 137- 142.
  • 3KARGARNOVIN M H, YOURNESIAN D, THOMPSON D J, JONES C J C. Response of beams on nonlinear viscoelastic foundations to harmonic moving loads[J]. Computers and Structures, 2005, 83:1865 - 1877.
  • 4KARGARNOVIN M H, YOURNESIAN D. Dynamics of Timoshenko beams on Pastemak foundation under moving load!J]. Mechanics Research Communications, 2004, 31:713 - 723.
  • 5SHENG X, JONES C J C, PETYT M. Ground vibration generated by a harmonic load acting on a railway track[J]. Journal of Sound and Vibration, 1999, 228:3 - 28.
  • 6TAKEMIYA H, BIAN X C. Substructure simulation of Inhomogeneous track and layered ground dynamic interaction under train passage[J]. Journal of Engineering Mechanics, ASCE, 2005, 131:699 - 711.
  • 7PICOUX B, HOUEDEC D L. Diagnosis and prediction of vibration from railway trains[J]. Soil Dynamics and Earthquake Engineering, 2006, 25:905 - 921.
  • 8KIM S M. Vibration and stability of axial loads beams on elastic foundation under moving harmonic loads[J]. Engineering Structures, 2004, 26:95 - 105.
  • 9KIM S M. Vibration and dynamic buckling of shear beam-columns on elastic foundation under moving harmonic loads[J]. International Journal of Solids and Structures, 2006, 43:393 - 412.
  • 10BURKE M, KINGSBURY H B. Response of poroelastic layers to moving loads[J]. International Journal of Solids and Structures, 1984, 20:499 - 511.

二级参考文献16

  • 1Cole J, Huth J. Stresses produced in a half plane by moving loads[J]. Journal of Applied Mechanics, ASME, 1958, 25:433-436.
  • 2Eason G. The stresses produced in a semi-infinite solid by a moving surface force[J]. International Journal of Engineering Science,1965, 2:581-609.
  • 3Payton R G. An application of the dynamical Betti-Rayleigh reciprocal theorem of moving point loads in elastic medium[J]. Quarterly of Applied Mathematics, 1964, 20(1):299-313.
  • 4Gakenheimer D C, Miklowitz J. Transient excitation of an elastic half space by a point load traveling on the surface[J]. Journal of Applied Mechanics, ASME, 1969, 36:505-515.
  • 5De Barrors F C P, Luco J E. Response of a layered viscoelastic half-space to a moving point Ioad[J]. Wave Motion, 1994, 19:189-210.
  • 6Hung H H, Yang Y B. Elastic Waves in visco-elastic half-space generated by various vehicle loads[J]. Soil Dynamics and Earthquake Engineering, 2001, 21 (1) : 1-17.
  • 7Metrikine A V, Vostrukhov A V, Vrouwenvelder A C W M. Drag experienced by a high-speed train due to excitation of ground vibrations[J]. International Journal of Solids and Structures, 2001, 38:8851-8868.
  • 8Biot M A. Mechanics of deformation and acoustic propagation in porous media[J], J Appl Phys, 1962, 33(4) : 1482-1498.
  • 9Jin Bo. The vertical vibration of an elastic circular plate on a fluid-saturated porous half space[J]. International Journal of Engineering Science, 1999, 37(3) :379-393.
  • 10Jin Bo, Liu Hua. Vertical dynamic response of a disk on a saturated poroelastic half space[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(6):437-443.

共引文献29

同被引文献177

引证文献16

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部