期刊文献+

锰基高强度高塑性高阻尼形状记忆合金的性能研究

Characteristic of High Strength,High Plasticity and High Damping Shape Memory Mn-Based Alloys
下载PDF
导出
摘要 采用磁悬浮熔炼、测定试样形状记忆效应(SME)和双程形状记忆效应(TWSME)、金相法、示差量热分析(DSC)、断口形貌观察和自由震动波衰减曲线等方法研究了高强度高塑性高阻尼Mn基形状记忆合金的记忆特性以及Cu、Ni、Fe、Cr、Ti、N等元素对合金性能的影响。结果表明,Cu溶入越多,合金的SME越高;适当的时效热处理可强化合金提高其SME;含Ti、N元素的合金的SME最好,回复率达73%,TWSME回复率达21%。所研究的合金都有明显的双程形状记忆效应。淬火状态的合金有高的塑性,延伸率达25%,并有良好的阻尼抗震能力。淬火时效状态的合金有高的强度极限,尤其是高的屈服极限(σ=320~475MPa)、适当的塑性(δ为4.2%~5.0%),合金元素还能提高所研究合金的抗氧化和抗腐蚀能力。 The Mn-based shape memory alloys with high strength, high plasticity and high damping were prepared. The effects of alloy elements (Cu,Ni,Cr,Fe,Ti, N) on shape memory characterization, tensile properties and temper heat treatment were investigated ,using magnetic suspension melting, determining shape memory effect(SME), metallography, DSC of specimen, SEM of fracture surface and free decay curve of vibration wave. The results showed that higher contents of Cu increased the shape memory effect (SME); temper heat treatment improved the SME of tested alloys,but raised the martensite transformation temperature. The alloy containing Ti and Ni possessed the best SME among the three,and the shape recovery rate was up to 73%. All the tested alloys had excellent two-way SME, the TWSME of alloy 3 (Mn -Cu50-Ni5-Cr0.5-Fel-Til-NO.1)was up to 21%. The alloy in quenching state had high plasticity and good workability. The alloys in quenching and tempering state had higher strength, especially high yield strength (σ6=320-475 MPa) and suitable plasticity(δ≥4.2% -5.0%),so it should have higher fracture toughness. The tested alloys possessed good damping ability and good anti-oxidation and corrosion resistant characteristics.
出处 《材料保护》 CAS CSCD 北大核心 2007年第12期15-17,共3页 Materials Protection
关键词 Mn基 形状记忆合金 形状记忆效应 形状回复率 时效热处理 淬火 合金元素 Mn-based alloy shape memory alloys shape memory effect ( SME ) shape recovery rate temper heat treatment quenching alloying elements
  • 相关文献

参考文献18

  • 1Tangi T,Moriwaki H,Mio N,et al. Internal friction originating from random magnitism [ J], Japanese Journal of Applied Phsics, 2004,43(6A) :3 552 -3 556.
  • 2Cowlam N, Shamah A M. A Study of γ-Mn-Cu Alloys[ J ]. J Phys:Condens Matter, 1981 ( 11 ) :27 -43.
  • 3Mereno-Gobbi A, Eiras J A, The utrasonic bordoni peak in copper crystals and kink picture[J], J Phys:Condens Matter,2000 (12) :859.
  • 4Igata N. Application of high- damping alloys M2052 to preceision instrument [ C ]. 2nd International Symposium on High- Damping Materials ,2005:9 - 10.
  • 5Yin F,Ohsawa S,Sato A, et al, A MnCuNiFe damping alloy with superior workability and easiness for recycle [ J ]. Japan Inst. Metals ,2001 ,65 ( 7 ) :607 - 613.
  • 6王丽萍,郭二军,姚秀荣,朱兴松.Mn-Cu阻尼合金时效过程中晶体结构的变化[J].中国有色金属学报,2003,13(1):46-50. 被引量:15
  • 7张忠明,刘宏昭,王锦程,杨根仓.材料阻尼及阻尼材料的研究进展[J].功能材料,2001,32(3):227-230. 被引量:98
  • 8Hodgson D E. Damping applications of shape memory alloys SM & ST[ C]. Inter Conference,2002:67 - 74.
  • 9Matthey J. SMA [ EB/OL]. http//www. jm medical. com. 2006 - 04 - 25.
  • 10Anon. High damping meials with emphasis to Cu- Zn- Al SMA [ EB/OL]. http//www. amtbe. com/damping. html, 2006 - 04 - 25.

二级参考文献7

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部