期刊文献+

基于模糊自适应PID的连铸二冷控制系统设计与仿真 被引量:2

Design and Simulation Based on Fuzzy Self-adaptive PID for Secondary Cooling Control System During Continuous Casting
下载PDF
导出
摘要 为改善铸坯质量,提高二冷水量的跟踪性和稳定性,将中包温度引入二冷配水,设计出基于配水模型、中包温度、铸坯表面温度及模糊自适应PID的连铸二冷控制系统,并在实验室搭建连铸二冷区喷淋仿真实验系统.在此基础上,分别对常规PID、积分分离PID和模糊自适应PID进行阶跃信号测试和模拟浇注测试.仿真结果表明,模糊自适应PID控制方式在两种测试中的特性要优于其他两种控制方式,这一结果为下一步应用研究打下了良好的基础. To improve billet quality and the trackability and stability of secondary cooling water during continuous casting, the tundish temperature is introduced into the water distribution for secondary cooling to design the relevant control system, based on the distribution model, tundish temperature, surface temperature and fuzzy self-adaptive PID. A spray cooling system is thus set up for simulation in lab to test the step signal from the conventional, integral separated and fuzzy self-adaptive PID controllers and the simulated casting. The simulation results show that the fuzzy self-adaptive PID controller's performance is better than the other two controllers', which provides a foundation for further study and application.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第12期1693-1696,共4页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2006AA040309)
关键词 连铸 二次冷却 中包温度 模糊自适应PID PLC continuous casting secondary cooling tundish temperature fuzzy self-adaptive PID PLC
  • 相关文献

参考文献9

  • 1武荣阳,吴国华,谢植,刘玉贵.基于粒子群算法的连铸二次冷却区冷却水量的确定[J].东北大学学报(自然科学版),2005,26(12):1134-1137. 被引量:5
  • 2Wu Z Q. PID type fuzzy controller and parameters adaptive method [J ]. Fuzzy Sets and Systems, 1996,78( 1 ) : 22 - 23.
  • 3Carvajal J, Chert G R, Ogmen H. Fuzzy PID controller:design, performance evaluation and stability analysis [J ]. Information Sciences, 2000,123(3/4) :249 - 270.
  • 4Kim E. A new approach to numerical stability analysis of fuzzy control systems[J]. IEEE Trans on Systems, 2001, 31(1):107- 113.
  • 5Reznik L, Ghanayem O, Bourmistrov A. PID plus fuzzy controller structures as a design base for industrial applications [J] Engineering Applications of Artificial Intelligence, 2000,13(4) :419 - 430.
  • 6陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002..
  • 7Pandey S K. PID type fuzzy controller and parameters adaptive method [J ]. Fuzzy Sets and Systems, 1997, 90 (1):101 - 102.
  • 8Kukolj D D, Kuzmanovi S B, Levi E. Design of a PID-like compound fuzzy logic controller [ J ]. Engineering Applications of Artificial Intelligence, 2001,14 (6) : 785 - 803.
  • 9Woo Z W. A PID type fuzzy controller with self-tuning scaling factors[J]. Fuzzy Sets and Systems, 2002,115(2) : 321 - 326.

二级参考文献14

  • 1Wu R Y, Meng H J, Mei G H, et al. Optimization of the water rate in secondary cooling zone of continuous casting billet[A]. The Third International Conference on Continuous Casting of Steel in Developing Countries[C]. Beijing, 2004.695-698.
  • 2Hiebler H, Zirngast J, Wolf M M. Inner crack formation in continuous casting: stress or strain criterion[A]. ISSI, 1994 Steelmaking Conference Proceeding[C]. Chicago, 1994.405-416.
  • 3Mok W Y, Jung Y T, Jin S D. New criterion for internal crack formation in continuously cast steels[J]. Metallurgical and Materials Transactions B, 2000,31(8):779-794.
  • 4Yamanaka A, Nakajima K, Okamura K. Critical strain for internal crack formation in continuous casting[J]. Ironmaking and Steelmaking, 1995,22(6):508-512.
  • 5Chakraborti N, Gupta R S P, Tiwari T K. Optimization of continuous casting process using genetic algorithms:studies of spray and radiation cooling regions[J]. Ironmaking and Steelmaking, 2003,30(4):273-278.
  • 6Brimacombe J K. Design of continuous casting machines based on a heat-flow analysis: state-of-the-art review[J]. Canadian Metallurgical Quarterly, 1976,15(2):163-175.
  • 7He Z, Wei C, Yang L, et al. Extracting rules from fuzzy neural network by particle swarm optimization[A]. IEEE International Conference on Evolutionary Computation[C]. Anchorage, 1998.214-221.
  • 8Santosa C A, Spimb J A, Garciaa A. Mathematical modeling and optimization strategies (genetic algorithm and knowledge base) applied to the continuous casting of steel[J]. Engineering Applications of Artificial Intelligence, 2003,16(8):511-527.
  • 9Cheung N, Garcia A. The use of a heuristic technique for the optimization of quality of steel billets produced by continuous casting[J]. Engineering Applications of Artificial Intelligence, 2001,14(4):229-238.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proc IEEE International Conference on Neural Networks[C]. Piscataway, 1995.1942-1948.

共引文献423

同被引文献19

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部