期刊文献+

氧化锌/银双层膜负反馈阴极电极的制备及性能研究

Research on Preparation and Characteristics of ZnO/Ag Bilayer Negative Feedback Cathode Electrode
下载PDF
导出
摘要 提出了一种可显著改善碳纳米管(CNTs)场致发射性能的ZnO/Ag双层膜负反馈阴极电极的制备方法.在条形银电极上溅射沉积一定厚度的Zn膜,经热氧化和湿法刻蚀制备成ZnO/Ag双层膜电极.同单层的Ag或氧化铟锡电极相比,该电极不仅具有足够的负反馈电阻(限流电阻)阻止CNTs场发射中过流的发生,而且降低了条形阴极电极的线性电阻,确保了场发射的均匀性.当溅射沉积Zn膜的厚度从40 nm增到120 nm时,热氧化形成的ZnO由孤岛状的颗粒变为连续体的薄膜,ZnO/Ag双层膜电极的表面光洁度比单层的Ag电极有很大的提高,负反馈电阻层的电阻增大,负反馈的能力增强.CNTs薄膜阴极场发射特性曲线证明,ZnO/Ag双层膜电极能明显降低场发射电流的波动,有效提高器件的稳定性和寿命. A preparation method of ZnO/Ag bilayer negative feedback cathode electrodes was proposed, which can remarkably improve the field emission properties of carbon nanotube (CNT) films. Direct current magnetron sputtering was adopted to deposit Zn film on strip sliver electrodes, and then thermal oxidizing and wet etching were employed to fabricate ZnO/Ag bilayer strip electrodes. Compared to monolayer electrodes of silver and indium tin oxide, the bilayer electrode not only possesses adequate negative feedback or limiting-current resistance to suppress over-current, but also induces the linear resistance to ensure luminescence uniformity. When the thickness of as-deposited Zn layer increased from 40 nm to 120 nm, the morphology of thermal oxidizing ZnO changed from islanded grains to continuous film. Thus, the ZnO/Ag bilayer electrode has smoother surface than sliver electrode. The limiting-current resistance was increased and the negative feedback ability was enhanced. The field emission characteristics of CNT film cathode prove that the ZnO/Ag bilayer electrode can decrease the fluctuation of CNT field emission current, and improve device stability and lifetime effectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第12期1470-1473,1478,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60036010 60476037) 国家高技术研究发展计划资助项目(2001AA313090)
关键词 阴极电极 磁控溅射 碳纳米管 场发射 cathode electrode magnetron sputtering carbon nanotube field emission
  • 相关文献

参考文献11

  • 1Li Weizhi, Ji Xingqiao, Zhong Zhiyou, et al. Sulfuric acid treatment of indium tin oxide for application of organic light-emitting diodes [C]//Proc SHE Int SOc Opt Eng. Bellingham, USA: International Society for Optical Engineering, 2006 : 60300A.
  • 2Chiu C C, Tsai T Y, Tai N H, et al. Field emission properties of carbon nanotuhe arrays through the pattern transfer process [J]. Nanotechnology, 2006, 17 (12) : 2840-2844.
  • 3Kim J S, Ahn K S, Kim C O, et al. Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature[J]. Appl Phys Lett, 2003, 82 (10) 1607-1609.
  • 4Jung Y J, Son G H, Park J H, et al. Fabrication and properties of under-gated triode with CNT emitter for flat lamp[J]. Diamond Relat Mater, 2005, 14(12): 2109-2112.
  • 5Levine J D, Meyer R, Baptist R, et al. Field emission from microtip test arrays using resistor stabilization [J]. J Vac Sci Technol: B, 1995, 13 (2):474-475.
  • 6David C P, Whitson T, Janiac D, et al. A study of low temperature crystallization of amorphous thin film indium-tin-oxide [J]. J Appl Phys, 1999, 85 (12): 8445-8450.
  • 7Hwang M S, Jeong H S, Kim W M, et al. Properties of co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source [J]. J Vac Sci Technol: A, 2003, 21 (4): 1399-1402.
  • 8曾凡光,朱长纯,刘兴辉,刘卫华.用机械破碎方法提高印刷碳纳米管薄膜的场发射性能[J].西安交通大学学报,2005,39(8):863-866. 被引量:15
  • 9Li Yukui, Zhu Changchun, Liu Xinghui. Field emission display with carbon nanotubes cathode: prepared by a screen-printing process [J]. Diamond Relat Mater, 2002, 11(11): 1845-1847.
  • 10Liu C, Matsutani T, Asanuma T, et al. Room-temperature growth of crystalline indium tin oxide films on glass using low-energy oxygen-ion-beam assisted deposition [J]. J Appl Phys, 2003, 93 (4): 2262-2266.

二级参考文献11

  • 1Jung J E, Choi J H, Park Y J, et al. Development of triode-type carbon nanotube field-emitter arrays with suppression of diode emission by forming electroplated Ni wall structure [J]. J Vac Sci Technol B, 2003, 21 (1): 375-381.
  • 2Choi Y S, Cho Y S, Kang J H, et al. A field-emission display with a self-focus cathode electrode [J]. Appl Phys Lett, 2003, 82 (20): 3 565-3 567.
  • 3Jung J E, Jin Y W, Choi J H, et al. Fabrication of triode-type field emission displays with high-density carbon-nanotube emitter arrays [J]. Physica B, 2002, 323(1-4): 71-77.
  • 4Chung D S, Park S H, Lee H W, et al. Carbon nanotube electron emitters with a gated structure using backside exposure processes [J]. Appl Phys Lett, 2002, 80 (21): 4 045-4 047.
  • 5Li Y, Zhu C, Liu X. Field emission display with carbon nanotubes cathode: prepared by a screen-printing process [J]. Diam Relat Mater, 2002, 11 (11): 1 845-1 847.
  • 6Shi Y S, Zhu C C, Wang Q, et al. Large area screen-printing cathode of CNT for FED [J]. Diam Relat Mater, 2003,12 (9): 1 449-1 452.
  • 7Li J, Lei W, Zhang X, et al. Field emission characteristic of screen-printed carbon nanotube cathode [J]. Appl Surf Sci, 2003, 220 (1-4): 96-104.
  • 8Itoh S, Tanaka M.Current status of field-emission displays [J]. Proceedings of the IEEE, 2002,90 (4): 514-520.
  • 9Vink T J, Gillies M, Kriege J C, et al. Enhanced field emission from printed carbon nanotubes by mechanical surface modification [J]. Appl Phys Lett, 2003, 83 (17): 3 552-3 554.
  • 10Kim J M, Choi W B, Lee N S, et al. Field emission from carbon nanotubes for displays [J]. Diam Relat Mater, 2000,9 (3-6): 1 184-1 189.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部