期刊文献+

基于脑电功率谱-连续隐马尔科夫链的精神疲劳分级模型 被引量:4

Mental Fatigue Staging Model Based on Electroencephalogram Power Spectrum and Continuous Hidden Markov Model
下载PDF
导出
摘要 提取多通道脑电(EEG)功率谱特征,训练连续高斯密度混合隐马尔科夫模型(CHMM),建立了基于功率谱-CHMM的精神疲劳分级模型.分级结果表明:EEG各节律功率谱及其比值是精神疲劳的敏感指标,CHMM对于不同的精神疲劳状态具有较高的分类精度,最高分类正确率达到97.5%;在训练样本相同的情况下,CHMM比反向传输人工神经网络具有更高的分类精度. Multi-channel electroencephalogram(EEG) power spectrum is extracted for training continuous hidden Markov model (CHMM), and a novel approach to classify the mental fatigue levels is proposed based on power spectrum-CHMM. The result shows that EEG power spectrum and the ratio of different rhythm serve as sensitive indices for mental fatigue, CHMM is effective for classifying metal fatigue levels with the highest classification accuracy of 97.5%. CHMM enables to classify more accurately comparing with back propagation neural network for the same training samples.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第12期1474-1478,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(30670534)
关键词 连续隐马尔科夫模型 脑电 功率谱 精神疲劳 continuous hidden Markov model electroencephalogram power spectrum mental fatigue
  • 相关文献

参考文献6

  • 1Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis[J]. Brain Research Review, 1999, 29(2/3) : 169- 195.
  • 2Jung Txyy-Ping,Stensmo M. Estimating alertness form the EEG power spectrum[J]. IEEE Transactions on Biomedical Engineering, 1997,44(1) : 60-69.
  • 3Myers C, Singer A, Shin F, et al.Modeling chaotic systems with hidden Markov model[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE, 1992:565-568.
  • 4Heck L P, McClellan J H. Mechanical system monitoring using HMM[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 1991 : 1697-1700.
  • 5Zhong S, Ghosh J. HMMs and coupled HMMs for multi-channel EEG classification [C] // International Joint Conference on Neural Networks. Piscataway: IEEE, 2002 : 1154-1159.
  • 6Ocak H, Loparo K A. A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2001:3141-3144.

同被引文献38

  • 1洪文,黄凤岗,苏菡.基于连续隐马尔科夫模型的步态识别[J].应用科技,2005,32(2):50-52. 被引量:6
  • 2蔡超豪,蔡元宇.人工神经网络在配电网线损计算中的应用[J].电力系统及其自动化学报,1995,7(3):33-38. 被引量:4
  • 3张连毅,郑崇勋,李小平,沈开泉.基于柯尔莫哥洛夫熵的生理性精神疲劳分级的可行性研究[J].航天医学与医学工程,2005,18(5):375-380. 被引量:11
  • 4陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 5李白若.基于神经网络的A市电网理论线损率的预测[D].重庆:重庆大学,2006.
  • 6KHUSHABA R N, KODAGODA S,LAL S, et al. Driver drowsiness classification using fuzzy wavelet-packet-based fea- ture-extraction algorithm [J]. IEEE Trans Biomed Eng, 2011, 58(1): 121-131.
  • 7PEIRIS M, JONES R D, DAVIDSON P R, et al. Detecting behavioral microsleeps from EEG power spectra [C]//Pro ceedings of the 28th IEEE EMBS Annual International Con- ference, New York City: 2006: 5723-5726.
  • 8CHUANG C H,LAI P C, KO L. W, et al. Drivels cognitive state classification toward brain computer interface via using a generalized and supervised teehnology[CJ//The 2010 Interna tional Joint Conference on Neural Networks, (IJCNN), Spain: 2010: 1-7.
  • 9CAO L, LI J, SUN Y R, et al. EEG-based vigilance analysis by using fisher score and PCA algorithm [C]//IEEE Interna- tional Conference on Progress in Informatics and Computing (PIC), China.- 2010: 175-179.
  • 10PAN J, REN Q S, LU H T. Vigilance analysis based on frac- tal features of EEG signals [C]// International Symposium on Computer, Communication, Control and Automation, Tai wan, 2010 :446-449.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部