期刊文献+

走离效应对级联和频与差频波长转换的影响 被引量:1

Wavelength conversion based on cascaded SFG+DFG in pulsed pumping
下载PDF
导出
摘要 通过理论分析和数值模拟研究了在双脉冲泵浦情况下的级联和频与差频的二阶非线性效应,探讨了走离效应对波长转换的影响。由于不同波段的光脉冲之间的群速度失配导致光脉冲之间的走离,使和频光脉冲随波导长度不断产生并展宽,结果表明在走离效应的影响下和频光脉冲移出非线性效应作用区带走能量,作用区的能量平衡关系被破坏;差频转换效率受到和频转换效率较低的遗传而下降;同时转换脉冲波形受到和频脉冲展宽的影响而发生了畸变。研究还表明,双泵浦波长同时变动时泵浦带宽很宽,而单一泵浦波长变动时泵浦带宽很窄。 The cascaded second-order nonlinear interactions of Sum-frequency and Difference-frequency Generation (SFG+DFG) in periodically poled lithium niobate waveguide were presented. Through theoretical analysis and numerical simulations, the walk-off effect between sum-frequency pulse and pump pulse caused by Group Velocity Mismatch (GVM) was discussed. The results demonstrate that Sum Frequency (SF) pulse is continually broadened with wavelength and scatters the energy from the interaction zone in pulsed pumping wavelength conversion, so the balance of energy in the center of interactions is broken. As a result, the conversion efficiency of Difference Frequency (DF) greatly increases because of the low conversion efficiency of SF and DF pulse waveform is asymmetrical with a phase shift of peak power At the same time, the results demonstrate that the pump-bandwidth is broad if two pump-wavelengths are adjusted simultaneously and it is narrow if only one pump-wavelength is adjusted alone
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第12期66-71,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助课题(60577006)
关键词 波长转换 和频效应 差频效应 走离效应 光通信 wavelength conversion sum frequency generation difference frequency generation walk-off effect optical communication
  • 相关文献

参考文献9

  • 1Chou M H, Brener I, Fejer M M, et al. 1.5μm-band wavelength conversion based on cascaded second-order nonlinear susceptibility in LiNbO3 waveguides [J]. IEEE Pho. Tech. Lett, 1999, 11: 653-655.
  • 2Ishizuki H, Suhara T, Fujimura M, et al. Wavelength-conversion type picosecond optical switching using awaveguide QPM-SHG/DFG device [J]. Opt. Quantum Electron, 2001, 33: 953-961.
  • 3Sun J, Yuan X, Liu D. Tunable wavelength conversion between picosecond pulses using cascaded second-order nonlinearity in LiNbO3 waveguides [J].Appl. Phys. B, 2005, 80: 681-685.
  • 4Sun J, Liu W, Tian J. Multchannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides [J]. IEEE Pho. Tech. Lett, 2003, 15: 1743-1745.
  • 5Luo Chuanhong, Sun Junqiang, Wang Jian. Comparison of Two Wavelength Conversion Schemes by Exploiting Cascaded Harmonic and Difference Frequency Generation in PPLN [J]. Microwave and Optical Technology Letters, 2007, 49: 905-910.
  • 6Chen B, Xu C Q. Analysis of novel cascaded SFG+DFG wavelength conversions in quasi-phase-matched waveguides [J]. IEEE J.Quantum Electron, 2004, 40: 256-261.
  • 7Wang Jian, Sun Junqiang, Luo Chuanhong, et al. Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides [J]. Optics Express, 2005, 13: 7405-7414.
  • 8Wang Jian, Sun Junqiang, Luo Chuanhong, et al. Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum and difference frequency generation (cSFG/DFG) in a PPLN waveguide [J]. Appl. Phys. B, 2006, 83: 543-548.
  • 9Yu Song, Gu Wanyi. Wavelength Conversions in Quasi-Phase Matched LiNbO3 Waveguide Based on Double-Pass Cascaded SFG+DFG Interactions [J]. IEEE J. Quantum Electron, 2004, 40: 1548-1554.

同被引文献15

  • 1Peter A. Andrekson, Mathias Westlund, Henrik Sunnerud et al.. Nonlinearity-based all-optical sampling of ultrahigh-bandwidth optical signal[C]. SPIE, 2004, 5596: 319-331.
  • 2I. Shake, E. Otani, H. Takara et al.. Bit rate flexible quality monitoring of 10 to 160 Gb/s optical signals based on optical sampling technique[J]. Electron. Lett., 2000, 36(25): 2087-2089.
  • 3S. Kawanishi, T. Yamamoto, M. Nakazawa et al.. High sensitivity waveform measurement with optical sampling using quasi-phasematched mixing in LiNbO3 waveguide[J]. Electron. Lett., 2001, 37(13): 842-844.
  • 4J. Wang, J. Sun, C. Luo et al.. Flexible al-optical wacelength conversions of 1.57 ps pulse exploiting cacaded sum- and difference frequency generation(cSFG/DFG) in a PPLN waveguide[J]. Appl. Phys. B, 2006, 83(4): 543-548.
  • 5Yu Song, Gu Wanyi. Wavelength conversions in quasi-phase matched LiNbO3 based on double-pass cascaded x(2) SFG+DFG interactions[J]. IEEE J. Quant. Electron., 2004, 40(11): 1548-1554.
  • 6Nobuhide Yamada, Seiji Nogiwa, Hiroshi Ohta. 640-Gb/s OTDM signal measurement with high-resolution optical sampling system using wavelength-tunable soliton pulses[J]. IEEE Photon. Technol. Lett., 2004, 16(4): 1125-1127.
  • 7S.-D. Yang, Z. Jiang, A. M. Weiner. Extremely low-power intensity autocorrelation and chromatic dispersion monitoring for 10-GHz, 3-ps optical pulses by aperiodically poled lithium niobate (A-PPLN) waveguide[C]. Conference on Optical Fiber Communication, Technical Oigest Series, San Diego County, 2005, 3: 491-493.
  • 8刘茂桐 杨爱英 孙雨南.基于周期极化铌酸锂波导的软件同步光采样.光学学报,2008,28(12):283-288.
  • 9Jorge Fonseca-Campos, Yong Wang, Bo Chen. 40-GHz picosecond-pulse second-harmonic generation in an MgO-Doped PPLN waveguide[J]. J. Lightwave Technol., 2006, 24(10): 3698-3708.
  • 10Carsten Schmidt-Langhorst, Hans-Geprg Weber. Optical sampling techniques[J]. J. Opt. Fiber. Commun. Rep., 2005, 2(1): 86-114.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部