期刊文献+

PtOEP掺杂Alq_3有机发光器件的能量传递 被引量:1

Energy transfer in PtOEP doped Alq_3 organic light-emitting devices
下载PDF
导出
摘要 研究了高效磷光染料八乙基卟啉铂(PtOEP)掺杂于主体材料八羟基喹啉铝(Alq3)体系中PtOEP、Alq3之间的能量传输机制。分别以PtOEP掺杂和未掺杂的Alq3膜作为发光层制作有机发光器件(OLED),改变掺杂浓度,检测器件电致发光(EL)光谱的变化。经分析,在5%、10%、20%三种掺杂浓度中,10%掺杂浓度能量传递效果最好。通过对掺杂和未掺杂器件电流密度-电压、亮度-电压数据检测,计算外量子效率,在低电流密度(≤7mA/cm2)驱动下掺杂器件外量子效率是未掺杂器件的5倍。 Employing 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(Ⅱ) (PtOEP) as a phosphorescent dye, doped into 8-hydroxyquinoline aluminum (A1q3) host, the mechanism of energy transfer is demonstrated. Organic light-emitting devices (OLEDs) are fabricated by using PtOEP doped A1q3 or only A1q3 as light emitting layer, respectively The electroluminescence spectra of devices with different doping concentration are detected under different driving current densities. Through the analysis of the spectra, the mechanism of energy transfer and the optical properties between PtOEP and A1q3, we conclude that 10% (by weight) doping concentration is optimal concentration. The external quantum efficiencies (QE) are calculated according to the current density-voltage and luminescence-voltage data. It is shown that the QE of devices with 10% PtOEP doping concentration is five times more than that of A1q3 only device under low driving current density (≤7 mA/cm^2).
机构地区 暨南大学物理系
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第12期134-137,144,共5页 Opto-Electronic Engineering
基金 广东省自然科学基金资助项目(06025173)
关键词 有机发光器件 磷光染料 能量转移 掺杂浓度 organic light-emitting devices phosphorescent dye energy transfer doping concentration
  • 相关文献

参考文献13

  • 1VanSlyke S A, Tang C W. Organic electroluminescent devices having improved power conversion efficiencies [P]. U.S. Patent: 4539507, 1985.
  • 2Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett, 1987, 51(12): 913-915.
  • 3Ballardini R, Varani G, Indelli M T, et al. Phosphorescent 8-quinolinol metal chelates. Excited-state properties and redox behavior [J]. Inorg. Chem, 1986, 25(22): 3858-3865.
  • 4Brown A R, Pichler K, Greenham N C, et al. Optical spectroscopy of triplet excitons and charged excitations in poly (p-phenylenevinylene) light-emitting diodes [J]. Chem. Phys. Lett, 1993, 210(1/3): 61-66.
  • 5Baldo M A, O'Brien D F, You Y, et al. High efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395: 151-154.
  • 6Forster Th. Transfer mechanisms of electronic excitation [J]. Faraday Discuss Chem. Soc, 1959, 27: 7-17.
  • 7Dexter D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys, 1953, 21(5): 836-850.
  • 8Klessinger M, Michl J. Excited states and photochemistry of organic molecules [M]. New York: VCH Publishers, 1995: 26-37.
  • 9Baldo M A, Thompson M E, Forrest S R. High-efficient fluorescent organic light-emitting devices using a phosphorescent sensitizer [J]. Nature, 2000, 403: 750-753.
  • 10Ponterini G, Serpone N, Bergkamp M A, et al. Comparison of radiation less decay processes in osmium and platinum porphyrins [J]. J.Am. Chem. Soc, 1983, 105: 4639-4645.

同被引文献30

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部