期刊文献+

一类带有时滞和阶段结构的竞争系统的动力学分析(英文) 被引量:1

Dynamic Analysis for a Stage-structured Competitive System with Delay
下载PDF
导出
摘要 研究一类具有时滞的两种群的竞争系统且其中一种群带有阶段结构的数学模型.得到了该系统的持续性及正平衡点的局部、全局稳定的条件,并且讨论了阶段结构和时滞对该系统的影响.结果表明,在特定的条件下时滞能导致稳定的平衡点转变为不稳定的平衡点. A mathematical model of two species competitive system with delay and stage structure is studied. The conditions for the permanence of the system, the local and global stability of the positive equilibrium are obtained, respectively. The effects on the system of the stage structure and delay is considered. It is shown that delay can cause a stable equilihrium to become unstable under some conditions.
作者 王霞 宋强
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2007年第2期133-137,142,共6页 Journal of Xinyang Normal University(Natural Science Edition)
基金 Supported by the NSF of China(10471117) the Henan Innovation Project for University Prominent Research Talents(2005KYCX017)
关键词 阶段结构 竞争系统 时滞 持续 stage structure competitive system delay permanence
  • 相关文献

参考文献10

  • 1CUI J A,CHEN L S,WANG W D.The Effect of Dispersal on Population Growth with Stage-structure[J].Computers Math Applic(S0898-1221),2000,39(5):91-102.
  • 2MAGNUSSON K G.Destabilizing Effect of Cannibalism on a Structured Predatorprey System[J].Math Biosci(S0025-5564),1999,155:61-75.
  • 3WANG W,GHEN L.A Predator-prey System with Stage Structure for Predator[J].Computers Math Applic(S0898-1221),1994,33(8):81-91.
  • 4AIELLO W G,FREEDMAN H I.A Time-delay Model of Single-species Growth with Stage Structure[J].Math Biosci(S0025-5564),1990,101:139-153.
  • 5AIELLO W G,FREEDMAN H I,WU J.Analysis of Model Representing Stagestructured Population Growth with State-dependent Time Delay[J].SIAM J Appl Math(S0036-1399),1992,52(3):866-869.
  • 6HE X Z.The Lyapunov Functionals for Delay Lotka-Volterra Type Models[J].SIAM Journal on Applied Mathematics(S0036-1399),1998,58(4):1222-1236.
  • 7HALE J K,WALTMAN P.Persistence in Infinite-dimensional Systems[J].SIAM J Math Anal(S0036-1410),1989,20:388-396.
  • 8WALTER W.Ordinary Differential Equations Graduate Texts in Mathematics[M].New York:Springer,1998.
  • 9KUANG Y.Delay Differential Equations with Applications in Population Dynamics[M].London:Academic Press,2004.
  • 10CHEN L S,SONG X Y,LU Z Y.Mathematica Models and Methods in Ecology[M].Chengdu:Science Press(in Chinese),2003.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部