摘要
图G的排斥(整)和数ε(G)(ξ′(G))是使得G∪nK1是排斥(整)和图的非负整数n的最小值.本文给出了连圈图的定义,并证明了连圈图的排斥(整)和数等于5.
The exclusive(integral)sum number ε(G)(ζ'(G))of a graph G is the smallest number of isolated vertices which when added to G result in an exclusive(integral)sum graph.This paper gives a definition of jointed circles,and proves the exclusive(integral)sum number of jointed circles is 5 for all n≥3.
出处
《山东师范大学学报(自然科学版)》
CAS
2007年第4期15-16,共2页
Journal of Shandong Normal University(Natural Science)
关键词
连圈图
排斥(整)和数
排斥和标号
排斥图
jointed circles
exclusive(integral)sum number
exclusive sum labeling
exclusive graph