期刊文献+

R^s空间中Lagrange插值问题研究

Study of Lagrange Interpolation Problem in R^s
下载PDF
导出
摘要 研究空间Rs中多项式空间中的Lagrange插值问题.给出了R1和R2上Lagrange插值多项式的构造,同时,给出了R2上插值问题的几个例子.另外,给出了矩形网点上的Lagrange插值多项式和三角形网点上的Lagrange插值多项式.讨论了Rs空间中的Lagrange插值多项式及其余项. The problem and the construction of of Lagrange interpolation of polynomial space in space R^1 Lagrange interpolation polynomial in space R^1 and space is studied, R^2 is proposed. With several examples of interpolation problem in space R^2. In addition, the Lagrange interpolation polynomial on rectangular grid points and the Lagrange interpolation polynomial on trigonometric grid points are presented. The term in space R^sare discussed. Lagrange interpolation polynomial and its remainder
出处 《大连交通大学学报》 CAS 2007年第4期1-4,共4页 Journal of Dalian Jiaotong University
基金 辽宁省教育厅科学技术研究项目(05L047)
关键词 LAGRANGE插值 空间Rs 余项 Lagrange interpolation space R^s remainder term
  • 相关文献

参考文献4

二级参考文献31

  • 1梁学章.二元插值的适定结点组与迭加插值法[J].吉林大学自然科学学报,1979,(1):27-32.
  • 2LIANG Xue-zhang. Properly posed nodes for bivariate interpolation and the superposed interpolation[J]. Bulletin of Jilin University, 1979, 1; 27--32.
  • 3CHUI C E, LAI M J, Vandermonde Determinant and Lagrange Interpolation in R1[M]. in Nonlinear and Convex Analysis, B. L. Lin(ed. ), Marcel Dekker, New York, 1987, 23--36.
  • 4LIANG X Z, LU C M. Properly Posed Set of Nodes for Biwariate Lagrange Interpolation [M]. Approximation Theory IX, Vol. 1, Computational Aspect, Vanderbilt University Press, 1998, 180-- 196.
  • 5CHUNG K C, YAO T H. On lattices admitting unique Lagrange interpolation [J]. SIAM J. Numer.Anal., 1977, 14: 735--743.
  • 6DE BOOR C, RON A. The least solution for the polynomial interpolation problem [J]. Math. Z.,1992, 210: 347--378.
  • 7GASCA M, MAEZTU J I. On Lagrange and Hermite interpolation in Rt[J]. Numer. Math. , 1982,39: 1--14.
  • 8GASCA M. Multivariate Polynomial Interpolation [M]. Computation of Curves and Surfaces, Kluwer, 1990, 215--236.
  • 9LIANG Xue-zhang, FENG Ren-zhong, CUI Li-hong. On Lagrange interpolation on Sphere [J]. J.Northeastern. Math., 2000, 16(2): 243--252.
  • 10LIANG X Z,CUI L H.The application of Cayley-Bacharach theorem to bivariate Lagrange interpolaion[J].Comput Appl Math,2004,163(1):177-187.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部