摘要
考虑观测数据的不确定性,建立了识别稳态热传导边界条件和导热系数的有限元数值反演模型.采用凝聚函数法将此非线性规划问题转化为一个可微的单约束优化问题,在此基础上采用乘子罚函数法求解,获得了反演变量所在区间范围.
A FE model is presented for solving state, considering the uncertain property of the inverse heat conduction problems in the steady measured data. The problem of non-linear programming with multi-constrains of inequality can be converted into an optimization with a single differentiable constraint by exploiting a maximum entropy based function method. The interval of inverse parameters can be obtained by using a technique of multiplier penalty functions for the present model.
出处
《大连交通大学学报》
CAS
2007年第4期14-17,共4页
Journal of Dalian Jiaotong University
关键词
区间分析
凝聚函数法
反问题
热传导
interval analysis
aggregate function method
inverse problem
heat conduction