期刊文献+

外汇汇率时间序列静态属性的抽取 被引量:1

Study on Extracting Static Attributes in Time Series of Foreign Exchange Rate
下载PDF
导出
摘要 为了能够使用现有的数据挖掘技术(例如粗糙集)对外汇汇率时间序列进行数据挖掘,必须从外汇汇率时间序列数据中抽取决定时间序列行为发展趋势的静态属性.针对外汇汇率时间序列的特殊性,给出了时间序列静态属性抽取技术的几个关键步骤,完成了从外汇汇率时间序列中抽取出静态属性,最后利用这些静态属性组成的数据库,实现了对外汇汇率时间序列比较准确的预测. In order to perform existing data mining technology, such as Rough set, to mine the time series of foreign exchange rate, static attributes must be extracted to determine the developing tendency of time series behavior from the time series of foreign exchange rate. This paper presents several key steps of the time series static attributes extraction technology according to particularity of foreign exchange rate time series, then extracts static attributes from the foreign exchange rate time series, finally realizes accurate forecast to the foreign exchange rate time series by using the database composed of these static attributes.
出处 《大连交通大学学报》 CAS 2007年第4期55-58,共4页 Journal of Dalian Jiaotong University
关键词 外汇汇率 时间序列 静态属性 foreign exchange rate time series static attribute
  • 相关文献

参考文献5

  • 1CHEN M S, HAN J, YU P S. Data Mining, An Overview from a Database Perspective[J]. IEEE Tran, on knowledge and data gineering, 1996,8 ( 6 ) : 866- 883.
  • 2王晓晔,王正欧.粗集理论对股票时间序列的知识发现[J].计算机工程与应用,2003,39(29):99-102. 被引量:2
  • 3LAST M, KLEIN Y. Knowledge Discovery in Time series Databases[J]. IEEE Trans, on System, Man, and Cybemeticspartb, 2001, 31 ( 1 ) : 160-169.
  • 4KERBERR, CHI MERGE. Discretization of Numberic Attributes. Processdings of 10^th National Conference on Artificial Intelligence[C]. MIT press, 1992: 123-128.
  • 5厥夏.连续属性离散化方法研究[D].合肥:合肥工业大学,2006.

二级参考文献6

共引文献1

同被引文献2

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部