期刊文献+

基于联合粒子滤波的系统误差修正方法

Method of System Error Calibration Based on Joint Particle Filter
下载PDF
导出
摘要 在非线性滤波系统中,线性化误差和系统误差是影响滤波精度的两个主要因素.提出联合粒子滤波方法,在减少线性化误差的同时,能够实时估计系统误差的大小并自适应地消除其影响.说话人跟踪仿真实验结果验证了此方法的有效性. In nonlinear filtering system, linearization error and system error are two major factors that affect filtering accuracy. A joint particle filtering method is proposed to estimate system error in real time and eliminate its effect adaptively as well as to minimize the linearization error. Simulation results of speaker tracking demonstrate the effectiveness of the proposed method.
出处 《大连交通大学学报》 CAS 2007年第4期59-63,共5页 Journal of Dalian Jiaotong University
关键词 系统误差 联合滤波 粒子滤波 线性化误差 system error joint filter particle filter linearization error
  • 相关文献

参考文献12

  • 1刘利生,杨萍.有序递推滤波修正系统误差方法[J].飞行器测控学报,2003,22(3):7-11. 被引量:1
  • 2BIZWAS K K, MAHALANABIS A K. Suboptimal algorithm for nonlinear smoothing[ J ]. IEEE Transaction on Aerospace and Electronic Systems, 1973,9 ( 4 ) : 529- 534.
  • 3JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation[ J]. Proceeding of the IEEE.,2004,92(3) :401-422.
  • 4ITO K,XIONG K. Gaussian filters for nonlinear filtering problems[ J ]. IEEE Transactions on Automatic Control, 2000, 45(5) :910-927.
  • 5NORGAARD M, POULSEN N, RAVN O. New developments in state estimation for nonlinear systems [ M ]. Automatica,36, 2000 : 1627-1638.
  • 6DOUCET A, GODSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistical Computation ,2000,10( 3 ):197-208.
  • 7NRLDON A T. Nonlinear estimation and modeling of noisy time-series by dual Kalman filtering methods[ D]. Oregon Graduate Institute, 1999.
  • 8WAN E, MERWE R V, NELSON A T. Dual estimation and the unscented transformation[ A]. Neural Information Processing Systems,2000,12 : 666-672.
  • 9ALLEN J B ,BERKELY D A. Image method for efficiently simulating small-room acoustics[J]. Journal of the Acoustical Society of America, 1979, 65 (4) 943-950.
  • 10KNAPP C H ,CARTER G C. The generalized correlation method for estimation of time delay [ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1976,24 (4) - 320- 327.

二级参考文献12

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978..
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25.
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995.
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356.
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com.
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997.
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com.
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000.
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,.
  • 10Theory or Applications of Kalman Filtering. AD 704306,1970 : Chapter 1,2,5.

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部