期刊文献+

横场和晶场作用下S=2的Ising模型的磁性质 被引量:1

The Magnetic Properties of the Spin-2 Ising Model Under the Transverse Field and Crystal Field
下载PDF
导出
摘要 采用平均场理论,计算了高自旋S=2且处于外界横向磁场的Ising模型,推导出系统有限温度下磁矩及自由能的理论计算公式,利用数值计算方法得到了系统在有限温度下的磁化曲线,重点考察了有限温度下纵向晶场D和横场Ω对自旋系统磁化曲线及自由能的影响。从磁化曲线中观察到了4种相变特征:一级有序-有序相变、一级有序-无序相变、二级有序-无序相变及重入现象。研究发现重入现象只发生于存在横向磁场的情况下;一级相变发生在狭小的晶场和横场范围内,一级有序-有序相变的存在范围更加狭小,而二级有序-无序相变存在于较大的晶场和横场范围内;总体上说一级相变对应的温度较二级相变对应的温度低;晶场是促进相变发生的因素;横场是限制相变发生的因素。 The mean-field theory was adopted to calculate the high spin-2 transverse Ising model. Theoretical expressions for magnetic moment and free energy were deduced at finite temperature. Magnetization curves of the system at the limited temperature were obtained by the use of numerical calculation. The study emphases on examining the influence of crystal field D and transverse field Ω on magnetization curves of spin systems and free energy. Characteristics of four phase transitions were observed in the magnetization curves: first order-order phase transition, first order-disorder phase transition, second order -disorder phase transition and reentrant phenomenon. The results show that reentrant phenomenon appears only when transverse field is not equal to zero; first - order phase transition appears in the very narrow range of crystal field and transverse field; the scope of first order-order phase transition is narrower; second order - disorder phase transition occurs in the wide range of crystal field and transverse field. In general the temperature of the first - order phase transition is lower than that of the second - order phase transition. Crystal field is a factor to accelerate phase transitions, and transverse field is a factor to limit phase transitions.
作者 赵杰 许星光
出处 《辽宁石油化工大学学报》 CAS 2007年第4期31-34,共4页 Journal of Liaoning Petrochemical University
关键词 平均场理论 一级相变 横向磁场 磁化曲线 Mean-field theory First-order phase transition Transverse field Magnetization curve
  • 相关文献

参考文献2

二级参考文献23

  • 1Blume M.Theory of the first-order magnetic phase change in UO2 [J].Phys.rev.,1966,141:517.
  • 2Yokoi C S O,Coutinho F M D,Salinas S R.Ising model with competing axial interactions in the presence of a field:A mean-field treatment[J].Phys.rev.B,1981,24:4047-4061.
  • 3Abubrig O F,Horvath D,Bocak A,Jassur M.Mean-field solution of the mixed spin-1 and spin-3/2 Ising system with different single-ion anisotropies[J].Physica A,2001,296:437-450.
  • 4Kaneyoshi T,Fittipaldi I P,Honmura R,Manabe T.New correlated-effective-field theory in the Ising model[J].Phys.rev.B,1981,24:481-484.
  • 5Kaufman M.Square-lattice Ising model in a weak uniform magnetic field:renormalization-group analysis[J].Phys.rev.B,1987,36:3697-3700.
  • 6Wansleben S,Landau D P.Monte Carlo investigation of critical dynamics in the three-dimensional Ising model[J].Phys.rev.B,1991,43:6006-6014.
  • 7Kaneyoshi T,Jascur M,Fittipaldi I P.Transverse Ising model with arbitrary spin[J].Phys.rev.B,1993,48:250-255.
  • 8姜伟,魏国柱,辛子华.Phase diagrams and tricritical behavior of spin-2 Ising model with a transverse crystal field[J].Phys.stat.sol.(b),2001,221:759-765.
  • 9C.S.O.Yokoi,M.D.Coutinho-Filho,and S.R.Salinas,Phys.Rev.B 24 (1981) 4047.
  • 10O.F.Abubrig,D.Horvath,A.Bocak,and M.Jassur,Physica A 296 (2001) 437.

共引文献5

同被引文献15

  • 1ZHAO Jie,WEI Guo-Zhu,XU Xing-Guang.Ground-State Phase Diagram of Transverse Spin-2 Ising Model with Longitudinal Crystal-Field[J].Communications in Theoretical Physics,2006,45(4):749-753. 被引量:5
  • 2储德清,王立敏,张景萍,王荣顺.以杂环做端基的高自旋双自由基分子的理论研究[J].东北师大学报(自然科学版),2007,39(1):81-83. 被引量:6
  • 3WALASEK K.LUKIERSKA-WALASEK K.Quantum transverse lsing spin-glass model in the mean-field approximation[J].Phys Rev,1986,B 34:4962-4965.
  • 4KANEYOSHI T,FITTIPALDI I P,HONMURA R,et al.New correlated-effective-field theory in the Ising model[J].PhysRev,1981,B 24:481-484.
  • 5KAUFMAN M.Square-lattice Ising model in a weak uniform magnetic field:renormalization-group analysis[J].Phys ReV,1987,B36:3697-3700.
  • 6OITMAA J,HAMER C,ZHENG WEIHONG.Series expansion methods for strongly interaction lattice models[M].UK Cam-bridge:Cambridge University Press,2006:1-79.
  • 7WANSLEBEN S,LANDAU D P.Monte Carlo investigation of critical dynamics in the three-dimensional Ising model[J].Phys Rev,1991,B43:6006-6014.
  • 8ELKOURAYCHI A,SABER M,TUKER J W.On the theory of the transverse lsing model with arbitrary spin[J].Physica A.1995,213:576-586.
  • 9HTOUTOU K,BENABOUD A,AINANE A,et al.The phase diagrams and the order parameters of the transverse spin-1 Ising model with a longitudinal crystal-field[J].Physica A,2004,338:479-492.
  • 10JIANG WEI,WEI GUOZHU,Xin Zihua.Properties of ground state in the spi-3-2 transverse Ising model with crystal field[J].Phys Stst Sol B,2002,218:553-559.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部