摘要
主要工作:(1)设S是向量空间V上的有限维线性算子空间,SF表示S中全体有限秩算子,则S是n_代数自反的等价于SF是n_代数自反的;(2)S是Banach空间X上的连续线性算子空间,当S满足一定条件时。
In this paper two results given by D. Larson are generalized. First, let S be a finite dimensional linear subspace of the algebra of all linear operators form vector space V into itself, and let S F denote the space of all finite_rank operators in S , then S is n _algebraically reflexive iff S F is n _algebraically reflexive. Second, let S be a linear subspace of the algebra of all continuous linear operators on a Banach space X , then S is n _topologically algebraically reflexive iff S F is n _topologically algebraically reflexive when S satisfies some properties.
出处
《曲阜师范大学学报(自然科学版)》
CAS
1997年第3期23-25,共3页
Journal of Qufu Normal University(Natural Science)
关键词
n-自反
拓扑阀数
有限秩算子
自反性
n _Reflexive n _Algebraically reflexive n _Topologically algebraically reflexive Finite_rank operator