摘要
本文的第一部分包含了JCMcConnel〔3〕中的定理的证明,其结果描述了一个非交换的Noether环,当每个理想都有一个生成元的正规集合的情形下素理想的符号幂的形式,且略去了〔3〕中定理的其它条件。第二部分包含了一个通常感兴趣的结果。如果右Noether环R有一个右商环Q,且I是R的任意双侧理想,那么IQ是Q的一个双侧理想。
The first part of this paper contains a proof of a theorem of J.C.McConnell 3 .The result describes the form of the symbolic powers of a prime ideal of a non-comutative Noetherian ring,in the case when each ideal has a normalising set of generators.The result proved here is in fact stronger,since other conditions are omitted. \ \ The second part contains a result of more general interest.If a right Noetherian ring R has a right quotient ring Q and I is any two-sided ideal in R,then IQ is a two-sided ideal of Q.The result generalizes Theorem 1.16 of 2 .
出处
《南昌大学学报(理科版)》
CAS
1997年第1期8-10,共3页
Journal of Nanchang University(Natural Science)