期刊文献+

PSO-BP网络模型在数据分类中的应用 被引量:3

Application of PSO-BP Network in the Data Classification
下载PDF
导出
摘要 分类技术是数据挖掘的重要分支,常见的分类方法有决策树、统计方法、机器学习方法、BP神经网络方法等。本文针对标准BP网络存在的一些缺陷,结合一种进化算法微粒群(PSO)算法,建立了一种用于数据分类的网络模型。该模型充分利用微粒群算法的全局寻优特性,优化BP网络的权值和阈值,既保证了BP网络能收敛到全局最优解,加快了BP网络的收敛速度和收敛精度,又提高了待分类数据的识别准确率。仿真实验结果表明此模型较BP网络具有较好的分类识别性能。 The classification technology is an important branch of data mining. This paper introduces the basic ideas of particle swarm optimization algorithm. A network model is established for data classification, which is composed with PSO algorithm and BP network. The model takes full advantages of global searching of PSO. It optimizes the weights and biases of BP network and also accelerates the network' s convergence. The computer simulation result shows that it has preferable classification and recognition capability
出处 《自动化技术与应用》 2007年第11期13-15,18,共4页 Techniques of Automation and Applications
基金 内蒙古自然科学基金(200408020809)
关键词 微粒群算法 BP网络 模式识别 数据挖掘 particle swarm optimization BP network: pattern recognition data mining
  • 相关文献

参考文献9

  • 1D.EURUMELHART and J.L.MCCLELLAND,et.al.Parallel Distributed Processing : Explorations in the Microsfructure of Cognition[M].MIT Press,Cambridge MA, 1986.
  • 2WANG KANGPING,HUANG LAN,ZHOU CHUNGUANG,et al.Particle Swarm Optimization for Traveling Salesman Problem[R].Proceedings of the Second International Conference on Machine Learning and Cybernetics,Xi' an,2003.
  • 3KENNEDY J,EBERHART R.Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth, 1995.1942-1948.
  • 4EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[A].Proc 6th Int Symposium on Micro Mathine and Human Science[C].Nagoya, 1995:39-43.
  • 5EBERHART R.C,SHI Y.Particle swarm optimization: developments,applications and resousrces [C].Proc. IEEEI' 1 Conf. on Evolutionary computation,Seoul,Korea.,2001:81-86.
  • 6ZWELEE GAING.Particle Swarm Optimization to Solv ing the Economic Dispatch Considering the Generator Constraints [J]. IEEE Transactions on Power Systems, 2003,18(3): 1187 - 1195.
  • 7申东日,冯少辉,陈义俊.BP网络改进方法概述[J].化工自动化及仪表,2000,27(1):30-33. 被引量:19
  • 8郭文忠,陈国龙.粒子群优化算法的研究进展[J].福建电脑,2005,21(4):7-8. 被引量:5
  • 9美国华盛顿大学.IRIS数据集[EB/OL].http://www.cs.washington.edu/dm/vfml /appendixes/ucidatasets.htm,2006-06-20.

二级参考文献24

共引文献24

同被引文献26

  • 1周梅,李政,凌海波,王坎,蔡俊雄.基于BP神经网络的义水河水环境质量评价研究[J].环境科学与技术,2012,35(S1):385-388. 被引量:10
  • 2艾永冠,朱卫东,闫冬.基于PSO-BP神经网络的股市预测模型[J].计算机应用,2008,28(S2):105-108. 被引量:11
  • 3潘昊,侯清兰.基于粒子群优化算法的BP网络学习研究[J].计算机工程与应用,2006,42(16):41-43. 被引量:67
  • 4Yi D, Ge XR. An improved PSO based ANN with simulated annealing technique. Neuron computing, 2005,63(11):527- 533.
  • 5Kennedy J, Eberhart RC. Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers. 2001.
  • 6Jiang CW, Bompard E. A self-adaptive chaotic particle swarm algorithm for short term hydroelectirc system scheduling in deregulated environment. Energy Conversion and Management, 2005,46:2689-2696.
  • 7HJ/T91-2002.地表水和污水监测技术规范[S].[S].,..
  • 8钟慧玲,李鸿洁,李冰.基于PSO的BP训练算法[J].计算机工程与设计,2007,28(17):4205-4206. 被引量:5
  • 9国家环境保护总局冰和废水监测分析方法[M].第四版.北京:中国 环境科学出版社,2002:300-345.
  • 10Kunwar P Singh, Ankita Basant, Amrita Malik, et al. Artificial neural network modeling of the river water quality:a case study[J]. Ecological Modelling, 2009, 220: 888-895.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部