期刊文献+

一类捕食模型正平衡解的局部分歧及稳定性

The local bifurcation and stability of positive steady-state solutins for a class of predator-prey model
下载PDF
导出
摘要 目的讨论一类捕食-食饵生态模型的平衡态系统在第一边界条件(或者是第三边界条件)下,分歧解的存在性和稳定性。方法局部分歧及其稳定性理论,线性化算子的扰动理论。结果在半平凡解(aθ,0)处存在正解分歧,且分歧解稳定。结论推广了模型多解的条件。 Aim To study the existence and stability on one kind of bifurcation solutions of steady-state system for a class of predator-prey biological system under the first boundary condition(or the third boundary condition).Methods Using the local bifucation and stability therories and the perturbation theorem for linear operator.Results The existence and the stability for the system generates bifurcation at semi-trivial solutions(θa,0).Conclusion The conditions of multiresolution are expended.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期527-530,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10571115) 教育部优秀青年教师基金资助项目
关键词 捕食-食饵系统 主特征值 局部分歧 稳定性 predator-prey system principal engenvalue local bifurcation stability
  • 相关文献

参考文献9

  • 1AZIZ-ALAOUI M A,DAHER O M.Boundness and global stability for a predator-prey model with modified Leslie-Grower and Holling-type Ⅱschemes[J].Appl Math Lett,2003,16:1 069-1 075.
  • 2DU Yi-hong.A diffusive predator-prey model in heterogeneous environment[J].J Differential Equations,2004,203:331-364.
  • 3PENG Rui,WANG Ming-xin.On multiplicity and stability of positive solutions of a diffusive prey-predator mode[J].J Math Anal Appl,2006,316:256-268.
  • 4查淑玲,李艳玲,杨秀香.一类反应扩散方程组混合问题正解的存在性[J].西北大学学报:自然科学网络版,2005,3(8):1-6.
  • 5王艳娥,李艳玲.一类捕食与被捕食系统正平衡解的存在性[J].西北大学学报(自然科学版),2005,35(6):680-682. 被引量:2
  • 6BLAT J,BROWN K J.Global bifurcation on positive solutions in some systems of elliptic equations[J].SIAMJ Math Anal,1986,17:1 339-1 353.
  • 7NAKA S K,YAMADA Y.Positive steady states for preypredator models with cross-diffiusion[J].Differential Equations,1996,6:1 099-1 122.
  • 8SMOLLER J.Shock Waves and Reaction-Diffusion Equations[M].New York:Springer-Verlag,1999.
  • 9WU J H.Global bifurcation of coexistence state for the competition model in the Chemostat[J].Nonlinear Anal,2000,39:817-835.

二级参考文献7

  • 1BLAT J, BROWN K J. Bifurcation of steady-state solutions in predator-prey and competition systems [J]. Proc Roy Soc Edinburgh Sect A, 1984, 97:21-34.
  • 2DANCER E N, Lopez-Gomez J, ORTEGA R. On the spectrum of some linear noncooperative elliptic systems with radial symmetry[J]. Differential and Integral Equations, 1995, 8(3):515-523.
  • 3BLAT J, BROWN K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. Siam J Math Anal, 1986, 17:1 339-1 353.
  • 4WU J H. Maximal attractor, stability and persistence for prey-predator model with saturation [J]. Math Comput Modelling, 1999, 30:7-16.
  • 5YE Q X, LI Z Y. Introduction to Reaction-Diffusion Equations[M]. Beijing:Science Press, 1990.
  • 6Smoller J. Shock Waves and Reaction-diffusion Equations[M]. New York-Springer-Verlag, 1983.
  • 7窦家维.一类具有扩散的SI传染病模型[J].西北大学学报(自然科学版),2003,33(1):1-4. 被引量:2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部