摘要
RBF神经网络噪声抵消系统不需要关于输入信号和噪声的先验知识,非线性映射能力强。采用自适应噪声抵消基本原理,构造RBF神经网络自适应滤波器,然后针对该系统,建立Simulink仿真模型。仿真结果表明,该方法具有良好的噪声抑制能力。
RBF neural network noise cancellation system does not need the previous information of input signal and noise and has better ability of nonlinear mapping. According to the theory of selfadapt Mode mace ive noise cancellation, RBF neural network adptive filter is established and then Simulink Model is established for the system. Simulation results show that the method has good perforcontrolling noises.
出处
《唐山学院学报》
2007年第6期39-40,52,共3页
Journal of Tangshan University
关键词
噪声
自适应滤波
RBF神经网络
噪声抵消
noise
self-adaptive filtering
RBF neural network
noise cancellation