期刊文献+

基于模糊积分的多神经网络融合模型的研究 被引量:1

Research on model of combining multiple neural networks by fuzzy integral
下载PDF
导出
摘要 为了进一步提高网络入侵检测系统的检测性能,将模糊积分理论和神经网络技术应用到网络入侵检测中,提出了基于模糊积分的多神经网络融合模型MNNF。它的基本思想是按照TCP/IP属性集的类别不同将TCP/IP数据集分成三个不同属性集的子数据集,在不同属性集上训练形成不同的子神经网络,然后用模糊积分将多个子神经网络对TCP/IP数据的检测结果进行非线性融合形成最优判断。实验结果表明,MNNF模型应用在网络入侵检测中可以得到比单个神经网络更好的入侵检测性能。 The model of Multiple Neural Networks by Fuzzy (MNNF) integral presented in this paper is an effective method to improve the detection performance of network intrusion detection system.The basic idea of MNNF is to divide TCP/IP dataset into three sub-datasets according to different attributes of TCP/IP data,train on different sub-datasets and construct different sub-neural networks separately,and detect TCP/IP data by different sub-neural networks,and then nonlinearly combine the results from multiple sub-neural networks by fuzzy integral.The experiment results show that this technique is superior to the single neural networks for network intrusion detection in terms of classification accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第34期165-167,共3页 Computer Engineering and Applications
关键词 模糊积分 神经网络 入侵检测 fuzzy integral neural network intrusion detection
  • 相关文献

参考文献7

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2罗敏,王丽娜,张焕国.基于无监督聚类的入侵检测方法[J].电子学报,2003,31(11):1713-1716. 被引量:64
  • 3米歇尔.机器学习[M].北京:机械工业出版社,2003.
  • 4Lee W,Stolfo S J.A framework for constructing features and models for intrusion detection systems [J].ACM Transactions on Information arid System Security,2000,3(4).227-261.
  • 5杜布瓦D,普哈德H.模糊集与模糊系统-理论和应用[M].江苏省模糊数学专业委员会,译.南京:江苏科学技术出版社,1987.
  • 6Cho S Bae,Kim J H.Combining multiple neural networks by fuzzy integral for robust classification[J].IEEE Transactions on Systems Man and Cybernetics, 1995,25 (2) : 380-384.
  • 7Cho S B,Kim J H.Muhiple network fusion using fuzzy logic[J]. IEEE Transactions on Neural Networks,1995,6(2):497-501.

二级参考文献49

  • 1LEE W,STOLFO S,MOK K. A data mining framework for adaptive intrusion detection[EB/OL]. http://www.cs.columbia.edu/~sal/ hpapers/framework.ps.gz.
  • 2LEE W, STOLFO S J, MOK K. Algorithms for mining system audit data[EB/OL]. http://citeseer.ist.psu.edu/lee99algorithms.html. 1999.
  • 3KRUEGEL C, TOTH T, KIRDA E.Service specific anomaly detection for network intrusion detection[A]. Proceedings of the 2002 ACM Symposium on Applied Computing[C]. Madrid, Spain, 2002. 201-208.
  • 4LIAO Y, VEMURI V R. Use of text categorization techniques for intrusion detection[A]. 11th USENIX Security Symposium[C]. San Francisco, CA, 2002.
  • 5An extensible stateful intrusion detection system[EB/OL]. http://www.cs.ucsb.edu/~kemm/NetSTAT/doc/index.html.
  • 6ILGUN K. USTAT: A Real-Time Intrusion Detection System for UNIX[D]. Computer Science Dep University of California Santa Barbara, 1992.
  • 7The open source network intrusion detection system [EB/OL]. http://www.snort.org/.
  • 8KO C, FINK G, LEVITT K. Automated detection of vulnerabilities in privileged programs by execution monitoring[A]. Proceedings of the 10th Annual Computer Security Applications Conference [C]. Orlando, FL: IEEE Computer Society Press, 1994. 134-144.
  • 9Computer security & other applications of immunology[EB/OL]. http://www.cs.unm.edu/~forrest/isa_papers.htm.
  • 10GRUNDSCHOBER S. Sniffer Detector Report[R]. IBM Research Division Zurich Research Laboratory Global Security Analysis Lab, 1998.

共引文献297

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部