期刊文献+

基于微粒群本质特征的混沌微粒群优化算法 被引量:11

Chaotic Particle Swarm Optimization Algorithm Based on the Essence of Particle Swarm
下载PDF
导出
摘要 在总结对微粒群优化(PSO)算法本质的主要研究成果的基础上,提出了基于微粒群本质特征的混沌微粒群优化(CPSO)算法.该算法用混沌搜索方法代替随机数产生器在较好的区域搜索最优解.为了提高粒子群的多样性,用由粒子邻域内若干个个体最优位置依其适应值加权平均得到的中心位置代替标准PSO算法的全局历史最优位置.然后,根据粒子个体最优位置与上述中心位置间的距离自适应地调整混沌搜索区域半径.用几个经典测试函数的仿真结果及与其它几种PSO算法的比较结果验证了新算法的有效性. A chaotic particle swarm optimization (CPSO) algorithm based on the essence of PSO was proposed, following an introduction to the studies on the essence of PSO algorithm. The new algorithm uses chaotic search rather than a random number generator to search a promising region. To increase the diversity, the globally best position in standard PSO algorithm is replaced by the center or weighted mean of the personal best positions of several particles in the same neighborhood. The radius of the chaotic searching region is then adaptively adjusted according to the distance between the personal best position of each particle and the center. Several benchmark functions were simulated with CPSO, and the results were compared with those obtained with some existing PSO algorithms. The comparison verifies the efficiency of CPSO.
作者 林川 冯全源
出处 《西南交通大学学报》 EI CSCD 北大核心 2007年第6期665-669,共5页 Journal of Southwest Jiaotong University
关键词 微粒群优化 本质 混沌搜索 随机数产生器 算法 particle swarm optimization essence chaotic search random number generator algorithm
  • 相关文献

参考文献9

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization[ C ].Proceedings of the IEEE International Joint Conference on Neural Networks, Perth, 1995. Piscataway: IEEE Press, 1995:1 942-1 948.
  • 2袁代林,陈虬.桁架结构拓扑优化的微粒群算法[J].西南交通大学学报,2007,42(1):94-98. 被引量:10
  • 3KENNEDY J. Bare bones of particle swarms [ C ],Proceeding s of the IEEE Swarm Intelligence Symposium, Indianapolis, 2003. Piscataway: IEEE Press, 2003 : 80-87.
  • 4KENNEDY J. Probability and dynamics in the particle swarm[C].IEEE Congress on Evolutionary Computation, Portland, 2004. Piscataway: IEEE Press, 2004 : 340-347.
  • 5KENNEDY J. Why does it need velocity? [C].2005 IEEE Swarm Intelligence Symposium, Pasadena, 2005. Piscataway: IEEE Press, 2005: 38-44.
  • 6KENNEDY J. In search of the essential particle swarm [ C ].IEEE Congress on Evolutionary Computations, Vancouver, 2006. Piscataway: IEEE Press, 2006:1 694-1 701.
  • 7孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 8费春国,韩正之.一种改进的混沌优化算法[J].控制理论与应用,2006,23(3):471-474. 被引量:16
  • 9JANSON S, MIDDENDORF M. A hierarchical particle swarm optimizer and its adaptive variant [ J ]. IEEE Trans. on Systems, Man, and Cybemetlcs - Part B :. Cybemectics, 2005, 35 (6) : 1 272-1 282.

二级参考文献18

共引文献99

同被引文献108

引证文献11

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部