期刊文献+

基于神经网络的路口交通流转向比预测 被引量:4

ANN-Based Prediction of Turning Rate of Traffic Flows at Intersection
下载PDF
导出
摘要 为了预测路口交通信号控制所需的转向交通流量,提出了基于改进BP(back-propagation)神经网络的路口交通流转向比预测模型,给出了相应参数的计算方法;采用自适应学习率和动量梯度下降法以提高神经网络的学习速度和算法的可靠性,并用调查数据对模型进行了检验.研究结果表明,与传统的平均值法相比,用所提出的模型,平均绝对相对误差减小约1%~3%. Based on an improved back-propagation neural network, a predication model for the turning rate of traffic flows at intersections was proposed to predict traffic flows for the signal control of intersections. The corresponding method to determine necessary parameters in this model was given. improve the learning rate and reliabihty of neural network algorithms, approach and the gradient descent with momentum method were adopted. carried out to prove the correctness of the proposed the self-adaptive learning rate In addition, a simulation was model. The research result shows that compared with the average value method, the proposed model can decrease the mean absolute relative error by 1% -3%.
出处 《西南交通大学学报》 EI CSCD 北大核心 2007年第6期743-747,共5页 Journal of Southwest Jiaotong University
基金 科技部"十五"科技攻关项目(2002BA404A20B)
关键词 交通流转向比 预测模型 神经网络 自适应学习率 traffic turning rate prediction model neural network self-adaptive learning rate
  • 相关文献

参考文献8

  • 1NIHAN N L, DAVIS G A. Recursive estimation of origin-destination matrices from input/output counts [ J ]. Transportation Research, Part B, 1987, 21(2) : 149-163.
  • 2BELL M G H. The real time estimation of origin-destination flows in the presence of platoon dispersion [ J ]. Transportation Research, Part B, 1991, 25(2) : 115-125.
  • 3王炜,徐吉谦.城市交通规划理论与方法[M].北京:人民交通出版社,1993:8-23.
  • 4史艳华.道路交叉口转向流量浅析[J].有色冶金设计与研究,1997,18(A00):17-19. 被引量:1
  • 5MIRCHANDANI P B, HEAD K L. A Real-time traffic signal control system: architecture algorithm and analysis [ J ]. Transportation Research Part C, 2001, 9(6) : 415-432.
  • 6YANG H, AKIYAMA T, SASAKI A T. A neural network approach to the identification of real time origin-destination from traffic counts [ C ] .Proceedings of the International Conference on Artificial Intelligence Application in Transportation Engineering, San Buenaventura, 1992 : 253-269.
  • 7何志宏.模糊类神经适应性网路号志控制模式之研究[R].台南市:国立成功大学,1995.
  • 8董菁,张毅,张佐,匡晓煊.基于主成分分析法的城市交通路口相关性分析[J].西南交通大学学报,2003,38(6):619-622. 被引量:21

二级参考文献3

  • 1Nwagboso C O. Advanced vehicles and infrastructure systems: computer applications, control, and automation [M]. New York: Wiley, 1997: 77-79.
  • 2任若恩 王惠文.多元统计数据分析[M].北京:国防工业出版社,1997..
  • 3朱中,杨兆升.实时交通流量人工神经网络预测模型[J].中国公路学报,1998,11(4):89-92. 被引量:61

共引文献20

同被引文献43

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部