期刊文献+

自动化立体仓库中货位实时分配优化问题研究 被引量:16

Optimization of Real-Time Storage Location Assignment in Automated Storage and Retrieval System
下载PDF
导出
摘要 本文研究了单元货格式自动化立体仓库中的货位实时分配问题。该问题可分为两方面:为入库分配空货位和为出库选择货位。在考虑了堆垛机的加减速对其运行速度的影响后,以堆垛机将要进行的所有操作的行程时间之和作为优化目标,通过调整堆垛机的后续操作的行程时间在总行程时间中的权重,依次构建了三个优化目标函数。然后利用结合了模拟退火方法的遗传算法对其进行了求解,并利用了多种技术提高算法的效率。最后利用仿真技术,通过改变仿真时系统中的货物类型总数、堆垛机的停留策略和装载能力,对该算法在不同情况下的效果进行了验证。仿真结果表明在不同情况下,该算法都可不同程度地减少堆垛机的平均行程时间。 This paper concerns storage location assignment in unit load automated storage/retrieval system. It can be divided into two aspects: assign the bin for the storage unit; choose the bin for retrieval command. With the consideration of the impact of crane' s acceleration and deceleration on crane' s ve- locity, the total travel time of the crane' s current operation and subsequent operations is used as the optimization object, then three optimization goal functions are developed by changing the weights of the crane's subsequent operations. The problem is solved by the genetic algorithm combined with the simulated annealing while the kinds of methods are used to improve the algorithm's efficiency. The algo- rithm is evaluated in different conditions by changing the number of product types, .crane's dwell point and capacity in numerous simulations. The result shows that the crane's expected travel time can be reduced by the algorithm in different conditions.
出处 《北京交通大学学报(社会科学版)》 2007年第4期18-24,共7页 Journal of Beijing Jiaotong University(Social Sciences Edition)
关键词 自动化立体仓库 货位分配 优化 遗传算法 模拟退火 automated storage and retrieval system storage location assignment optimization genetic algorithm simulated annealing
  • 相关文献

参考文献7

  • 1[1]Lee H F,Schaefer S K.Retrieval Sequencing for Unit Load Automated Storage and Retrieval Systems With Multiple Openings[J].International Journal of Production Research,1996,(34):2943-2962.
  • 2[2]Azadivar F.Maximization of the Throughput of A Computerized Automated Warehousing System Under System Constraints[J].International Journal of Production Research,1986,(24):551-566.
  • 3[3]Mansuri M.Cycle-Time Computation,and Dedicated Storage Assignment,for AS/R Systems[J].Computers & Industrial Engineering,1997,(33):307-310.
  • 4[4]刑文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005.
  • 5吴柯.一类高效的混合遗传算法[J].计算机与数字工程,2006,34(10):43-45. 被引量:7
  • 6玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 7[8]Potrc I,Lerher T,Kramberger M.Simulation Model of Multi-Shuttle Automated Storage and Retrieval Systems[J].Journal of Materials Processing Technology,2004,(157):236-244.

二级参考文献6

  • 1Holland J.Adaptation in natural and artificial systems[M].Ann Arbor:The University of Michigan Press,1975.
  • 2Ishibuchi H and Murata T.Multiobjective genetic local search algorithm and its application to flowshop scheduling[J].IEEE Trans.Syst,Man,Cybern.C,1998,28(3):392~403.
  • 3Lozano M,Herrera F,Krasnogor N and Molina D.Real-coded memetic algorithms with crossover hill-Climbing.Evol[J].Comput,2004,12(3):273~302.
  • 4http://www.densis.fee.unicamp.br/~moscato/memetic_home.html
  • 5Leung Y and Wang Y.An orthogonal genetic algorithm with quantization for global numerical optimization[J].IEEE Trans.Evol.Comput,2001,5(1):41~53.
  • 6杨启文,蒋静坪,张国宏.遗传算法优化速度的改进[J].软件学报,2001,12(2):270-275. 被引量:78

共引文献68

同被引文献92

引证文献16

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部