期刊文献+

基于局部二元模式算子的红外弱小目标检测 被引量:5

Infrared Dim Targets Detection Based on Local Binary Pattern
下载PDF
导出
摘要 文中针对在传统红外弱小目标检测中,需要进行背景抑制滤波所带来的图像性质改变和检测速度不理想的问题,提出了一种基于局部二元模式(local binary pattern,LBP)算子的红外弱小目标检测方法。该方法对传统LBP算子进行了改进,使其提取的LBP编码值可以有效地描述红外弱小目标的灰度分布特性,达到了在不进行背景抑制滤波的条件下有效检测弱小目标的目的。结合改进的LBP算子和红外弱小目标灰度的"尖峰"特征,建立了灰度自适应快速扫描机制,有效提高了检测速度,降低了重复告警的出现概率。通过实录红外图像序列检测实验,证明本文方法在检测性能和检测速度方面的有效性和优越性。 In this paper, we present a novel method for infrared dim targets detection based on local binary pattern (LBP). The modified LBP operator is proposed, by which the extracted LBP values can effectively characterize the intensity distribution of the infrared dim targets. Hence, the reasonable representation model of infrared dim target is built and the good performance of detecting dim targets without background suppressing can be achieved. Combined modified LBP with the intensity feature characteristic of dim target, the fast gray-level adaptive scan strategy is developed to speedup the detection process and restrain the false positive. The experiments result on actual infrared image sequences show that the presented method is feasible and effective.
出处 《激光与红外》 CAS CSCD 北大核心 2007年第12期1315-1318,共4页 Laser & Infrared
关键词 红外图像 弱小目标 局部二元模式 目标检测 infrared image dim target LBP target detection
  • 相关文献

参考文献10

  • 1Maybeck P S, Mercier D E. A target tracker using spatially distributed infrared measurements [ J]. IEEE Trans. ACS, 1980, 25:222 -225.
  • 2徐英.红外图像序列中运动弱小目标检测的方法研究[J].红外技术,2002,24(6):27-30. 被引量:37
  • 3彭嘉雄,周文琳.红外背景抑制与小目标分割检测[J].电子学报,1999,27(12):47-51. 被引量:143
  • 4Reiss D B. Spatial signal processing for infrared detection [A]. Proc. SPIE, 1994, 2235:38.
  • 5Li G, P J, Li H. Small target detection based on multiwavelet transform [ J]. J. Huazhong Univ. of Sci. & Tech. 2000, 28( 1 ) .72 -75.
  • 6Seer J. Image analysis and mathematical morphology [ M ]. New York.- Academic Press, 1982.
  • 7Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [ J ]. Pattern Recognition, 1996, 29:51 - 59.
  • 8Ojala T, Pietikainen M, Maenpa,aa T. Muhiresolution gray-scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Trans on PAMI, 2002, 24 (7) :971 -987.
  • 9Lew M S. Next-generation web searches for visual content. [J]. IEEE Computer, 2000, 33(11) :46-53.
  • 10Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary patterns [ J ]. ECCV 2004 Proceedings,Lecture Notes in Computer Science 3021, Springer, 2004:469 - 481.

二级参考文献9

共引文献177

同被引文献22

  • 1钟坚.红外成像制导武器的装备与发展[J].舰船电子工程,2008,28(6):27-29. 被引量:8
  • 2Comaniciu D, Meer P. Mean shift analysis and application[ J ].Proceedings of the Seventh IEEE International Confeerence, Computer Vison, 1999,2( 2 ): 1197-1203.
  • 3Johnston L A, Krishnamurthy V.Performance analysis of a dynamic programming track before detect algorithm [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2002,38( 1 ):228-241.
  • 4Bruno M G S.Bayesian methods for multiaspect target tracking in image sequences [ J ].IEEE Trans on Signal Processing, 2004,52( 7 ): 1848-1861.
  • 5Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions[ J ].Pattern Recognition, 1996,29 : 51 - 59.
  • 6Timo Ojala, Matti Pietikainen. Multiresolution Gray-scale and rotation Invariant Texture Classification with Local Binary Patterns [ J ]. IEEE transom on pattern analysis and machine intelligence, 2002,24( 7 ) : 971-987.
  • 7李良辉.计算视觉方法与SPOT卫星影像之几何特性分析[M].国立中山大学土木工程研究所博士论文,1991.
  • 8王永忠,赵春晖,梁彦,潘泉,赵永强,程咏梅.一种基于纹理特征的红外成像目标跟踪方法[J].光子学报,2007,36(11):2163-2167. 被引量:12
  • 9Ojala T,Pietikainen M,Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2002
  • 10李飞飞,刘伟宁,孙海江.基于FPGA+DSP的红外弱小目标检测与跟踪系统设计[J].激光与红外,2009,39(4):450-453. 被引量:13

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部