期刊文献+

基于KPCA和RBF网络的电子鼻气体识别 被引量:3

An electronic nose designed for gas recognition based on the kernel principal component analysis and RBF neural network
下载PDF
导出
摘要 提出了将KPCA特征提取和RBF网络识别相结合的气体检测方法,设计了一种用于气体实时检测的电子鼻系统,探讨了核主成分分析(KPCA)和RBF神经网络相结合进行气体识别的可行性。将传感器阵列的动态检测方法应用到电子鼻系统中,对甲苯、乙酸酐、乙醚、丙酮4种气体进行检测,针对响应信息的非线性变化利用KPCA进行特征提取,并作为RBF网络的输入,检测系统重复性和稳定性好,识别率可达87.5%。 This paper presents a gas detection method based on KPCA and RBF (radial basis function) network. An on-line electronic method and recognition can be achieved correctly. Dynamic detection is used to test toluene, acetic anhydride, aether and acetone. In view of the non-linear variation in the response information, the KPCA is used to extract the feature as the input of the RBF network. The results indicate that the electronic nose system good in repeatability and reliability. The recognition rate comes to 87.5%.
出处 《工业仪表与自动化装置》 2007年第6期76-80,共5页 Industrial Instrumentation & Automation
基金 国家自然科学基金资助项目(60604022 90406024)
关键词 电子鼻 动态检测 核主成分分析(KPCA) RBF神经网络 electronic nose system dynamic detection KPCA RBF network
  • 相关文献

参考文献11

二级参考文献35

  • 1桂中华,韩凤琴.小波包特征熵神经网络在尾水管故障诊断中的应用[J].中国电机工程学报,2005,25(4):99-102. 被引量:59
  • 2焦伯恒,戴国瑞,管玉国.气敏传感器阵列模式识别简述[J].云南大学学报(自然科学版),1997,19(2):217-219. 被引量:3
  • 3崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 4MI Y,ISHII M,et al.Vertical two-phase flow recognition using advanced instrumentation and neural networks[J].Nuclear Engineering and Design,1998,184:409-420.
  • 5孙成文 王鹏 王梅东.测空气中微量CO的Pt/YSZ电位型传感器.传感技术学报,1995,(4):16-21.
  • 6Mandayo G G, Castano E, Gracia F J, et al. Strategies to enhance the carbon monoxide sensitivity of tin oxide thin films[J]. Sensors and Actuators: B, 2003, 95:90-96.
  • 7Huang Xingjiu , Meng Fanli, Pi Zongxin, et al. Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation[J]. Sensors and Actuators B, 2004, 99(2-3): 444-450.
  • 8Huang Xingjiu, Wang Lianchao, Sun Yufeng, et al. Quantitive analysis of pesticide residue based on the dynamic response of a single SnO2 gas sensor[J]. Sensors and Actuators B, 2004, 99(2-3): 330-335.
  • 9Huang Xingjiu, Liu Jinhuai, Pi Zongxin, et al. Detecting pesticide residue by using modulating temperature over a single SnO2-based gas sensor[J]. Sensors, 2003, 3: 361-370.
  • 10Yang B,Carotta M C,Faglia G,et al.Quantification of H2S and NO2 using gas sensor arrays and an artificial neural network[J].Sensor and Actuators B,1997,43:235-238.

共引文献188

同被引文献27

  • 1李广义,黄家锐,苏润,黄行九,刘锦淮.基于传感器动态检测和神经网络的气体识别[J].传感器技术,2005,24(5):25-27. 被引量:6
  • 2黄家锐,李广义,徐伟宏,黄行九,刘锦淮.基于单传感器动态检测和神经网络的气体监测[J].传感器技术,2005,24(7):72-75. 被引量:7
  • 3戴洪德,杨建华,杜新虎,王晗,王米娜.电子鼻动态模式信息采集电路设计[J].传感技术学报,2005,18(4):722-725. 被引量:2
  • 4Arroto T, Lozano J, Cabellos J M, et al. Eva]uation of wine aromatic compounds by a sensory human panel and an electronic nose [ J ]. Journal of Agricultural and Food Chemistry, 2009,57 : 11543-11549.
  • 5Garea M, Aleixandre M, Gutierrez J, et al. Electronic nose for wine discrimination[ J ]. Sensors and Actuators B, 2006,113 : 911-916.
  • 6Brudzewski K,Ulaczyk J. An effective method for analysis of dynamic electronic nose responses [ J ]. Sensors and Actuators B : Chemical ,2009,140:43-50.
  • 7Zhan S, Li D, Liang S F, et al. A novel flexible room tempera- ture ethanol gas sensor based on SnO2 doped poly-diallyldimeth- ylammonium chloride[J]. Sensors, 2013, 13(4) :4378-4389.
  • 8Zeng W, I.iu T M, Wang Z C, et al. Selective detection of formaldehyde gas using a Cd-doped TiO2-SnO2 sensor[J]. Sen- sors, 2009, 9(11): 9029-9038.
  • 9Liewhiran C, Tamaekong N, Wisitsoraat A, et al. Hz sensing response of flame-spray-made Ru/SnO2 thick films fabricated from spin-coated nanopartieles [J]. Sensors, 2009, 9 ( 11 ) : 8996-9010.
  • 10Smyth H, Cozzolino D. Instrumental methods (Spectrosco- py, electronic nose, and tongue) as tools to predict taste and a- roma in beverages~ Advantages and limitations[J]. Chemical Reviews, 2012,(12) :A-L.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部