摘要
运用动网格上的ALE方法对一维可压缩多介质Riemann问题进行求解,在处理介质界面上的数值通量时提出了3种不同的数值方法:Lagrange方法、GFM和HLLC方法,并且对这3种方法的数值结果进行了比较,认为GFM方法和HLLC方法在介质界面上出现大压力梯度时能够明显消除界面上密度的非物理震荡,提高介质界面上数值解的精度.
It is important to deal with the material interfaces appropriately in multimaterial flows. ALE based on moving grids is applied to solve 1-D multi-material Riemann problems and three methods of dealing with the numerical flux on the material interface are proposed in this article: Lagrange method, GFM and HLLC method. According to the results obtained with these methods, the performance of GFM and HLLC method is better and they give more accurate results than Lagrange method at the material interface with high grades of pressure.
出处
《力学与实践》
CSCD
北大核心
2007年第6期51-55,共5页
Mechanics in Engineering
基金
国家自然科学基金(10476011)