期刊文献+

基于混合遗传算法和表面间平均体积度量的深度像匹配 被引量:3

Range Image Registration Using a Hybrid Genetic Algorithm and Surface Mean Inter-Space Measure
下载PDF
导出
摘要 提出了一种利用改进的遗传算法和表面间平均体积测度进行深度像匹配的方法.与现有基于距离的误差评判不同,该方法通过衡量深度像重叠区域内每个三角形所对应三维空间的大小来指导深度像的配准.另外,遗传算法的使用避免了困扰ICP算法的初值选取问题,退火选择、最优个体迁移以及动态的空间退化都保证文中所提出的混合遗传算法比传统的遗传算法具有更快的收敛速度,能够有效地完成深度像的精确匹配.实验结果表明该算法具有较高的配准精度,收敛速度快而且抗噪声能力强. A novel approach is presented for precise new error metric: Surface Mean Inter-Space Measure registration of polygon meshes pair with a (SMISM). The method is based on an improved genetic algorithm. Unlike the existing distance-based measures, the SMISM takes on the mean 3-D inter-space associated with each triangle in the overlap region to guide the range image registration. In addition, a hybrid genetic algorithm is able to register range images without need for pre-alignment, which is a key limitation always afflicting the well-known iterative closest point (ICP) method. The proposed hybrid GA, combined with the strategy of simulated annealing (SA) selection, best individual migration and dynamic parametric space degeneration, offers much faster convergence and more precise registration than the traditional GA methods. A set of experiments is designed to demonstrate that the presented method is insensitive to noises and has high precision as well as the fast convergence.
出处 《计算机学报》 EI CSCD 北大核心 2007年第12期2189-2197,共9页 Chinese Journal of Computers
基金 国家自然科学基金(60275012) 广东省普通高校自然科学研究重点基金(04Z010) 广东省自然科学基金(031804) 深圳市科技计划项目基金(200341)资助~~
关键词 遗传算法 表面间平均体积测度 深度像匹配 误差评判 genetic algorithm surface mean inters-space measure range image registration error metric
  • 相关文献

参考文献17

  • 1Chow C K, Tsui H T, Lee T. Surface registration using a dynamic genetic algorithm. Pattern Recognition, 2004, 37 (1):105-117
  • 2Silva L, Bellon Olga R P, Boyer Kim L. Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 762-776
  • 3Besl P J, McKay N D. A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
  • 4Chen Y, Medioni G. Object modeling by registration of multiple range images//Proceedings of the IEEE International Conference on Robotics and Automation. Sacramento, 1991: 2724-2729
  • 5Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm//Proeeedings of the 3rd International Conference on 3D Digital Imaging and Modeling. Quebec, 2001:145-152
  • 6Rodrigues M, Fisher R, Liu Y. Special issue on registration and fusion of range images. Computer Vision and Image Understanding, 2002, 87(1-3) : 1-7
  • 7Brunnstrom K, Stoddart A. Genetic algorithms for freeform surface matching//Proceedings of the 13th International Conference on Pattern Recognition. Vienna, 1996, 4:689-693
  • 8Lomonosov E, Chetverikov D, Ekart A. Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattern Recognition Letters, 2006, 27(11): 1201-1208
  • 9Blais G, Levine M. Registering multiview range data to create 3D computer objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 820-824
  • 10Robertson C, Fisher R B. Parallel evolutionary registration of range data. Computer Vision and Image Understanding, 2002, 87(1): 39-50

二级参考文献9

  • 1Rodrigues M, Fisher R, Liu Y. Special issue on registration and fusion of range images. Computer Vision and Image Understanding, 2002, 87:1-7.
  • 2Horn B K P. Closed-form solution of absolute orientation using unit quatemions. J Opt Soc Am A, 1987,4(4): 629--642.
  • 3Chen C S, Hung Y P, Cheng J B. RANSAC-Based DARCES: A new approach to fast automatic registration of partially overlapping range images. IEEE Trans Pattern Anal Mach Intell, 1999, 21(11): 1229-1234.
  • 4Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell, 1987, 9(9): 698-700.
  • 5Faugeras O, Herbert M. A 3D recognition and positioning algorithm using geometrical matching between primitive surfaces. In: Proc of the International Joint Conference on Artificial Intelligence, Karlsruhe,August 1983, 996-1002.
  • 6Huang T, Blostein S D, Margerum E A. Least-squares estimation of motion parameters from 3D point correspondences. In: Proc IEEE Conf Comput Vision and Pattern Recog, Miami Beach, FL, June 1986,198-200.
  • 7Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell, 1992,14(2): 239-256.
  • 8Chen Y, Medioni Ct Object modeling by registration of multiple range images. Image Vision Comput, 1992,10:145-155.
  • 9Turk G; Levoy M. Zippered polygon meshes from range images. Computer Graphics, 28 (Annual Conference Series), 1994, 28:311-318.

共引文献11

同被引文献80

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部