期刊文献+

SINGULAR SOLUTION OF A QUASILINEAR CONVECTION DIFFUSION DEGENERATE PARABOLIC EQUATION WITH ABSORPTION

SINGULAR SOLUTION OF A QUASILINEAR CONVECTION DIFFUSION DEGENERATE PARABOLIC EQUATION WITH ABSORPTION
原文传递
导出
摘要 In this paper the existence and nonexistence of non-trivial solution for the Cauchy problem of the form{ut=div(|Δ↓u|^p-2Δ↓u)-偏d/偏dxibi(u)-uq u(x,0)=0 (x,t)∈ST=R^N×(0,T),x∈R^N/{0}are studied. We assume that |bi′(s)|≤ Ms^m-1, and proved that if p〉2,0〈q〈p-1+p/N,0≤m〈p-1+p/N,then the problem has a solution;if P〉2,q〉P-1+p/N,0≤m≤q(p+Np-N-1)/p+nP-N,then the problem has no solution;if p〉2,p-1〈q〈p-1+p/N,0≤m〈q,then the problem has a very singular solution;if p〉2,q〉p-1+p/N,0〈m〈q-p/2N,then the problem has no very singular solution.we use P.D.E.methods such as regularization, Moser iteration and Imbedding Theorem.
作者 Zhang Peixin
出处 《Journal of Partial Differential Equations》 2007年第4期349-364,共16页 偏微分方程(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部