期刊文献+

带强奇异边界积分方程的迦辽金边界元解法(英文) 被引量:1

Galerkin boundary element method for solving the boundary integral equation with hypersingularity
下载PDF
导出
摘要 采用双层位势来表示二维Laplace方程Neumann问题的解,导致求解含超强奇异性的边界积分方程,将其转换为边界上的Galerkin变分方程求解.针对超强奇异积分的计算,运用分步积分,详细地推导了基于边界旋度的变分公式及边界旋度的表达式,最终把超强奇异的积分计算转化为弱奇异积分的数值计算.当采用线性边界单元来离散Galerkin变分公式时,在每个离散的单元上边界旋度成为常向量,因此,数值积分变得很简单.数值算例验证了方法的有效性和实用性. A Galerkin boundary elements method is applied to solve the integral equation with hypersingularity, which can be deduced from the double layer solution for the Neumann problem of Laplace equation. The scheme of integration by parts in the sense of distributions is performed to reduce the hypersingularity integral into a weak one, which shifts the partial derivatives of hypersingular kernel to the unknown function in the variational formulation. Thus, the boundary rotation of an unknown function is used to substitute for the original unknown function in the variational equation. When linear boundary elements are used in two-dimensional cases, the boundary rotation can be discretized into a constant vector on each element, so that the integrations can be performed in a simple way. The numerical tests illustrate the effectiveness and practicality of the scheme presented.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2007年第11期1357-1362,共6页 JUSTC
基金 Supported by the National Natural Science Foundation of China(No.50679097) the National Natural Science Foundation for Distinguished Young Scholars(No.50625824).
关键词 Galerkin边界元法 双层位势 超强奇异积分 LAPLACE方程 NEUMANN问题 Galerkin boundary element method double layer potential hyper singular integral Laplace equation Neumann problem
  • 相关文献

参考文献18

  • 1Giroire J, Nedelec J Co Numerical solution of an exterior Neumann problem using a double layer potential[J]. Mathematics of Computation, 1978, 32 (144) : 973-990.
  • 2Nedelee J C. Finite element for exterior problems using integral equations[J]. Int J for Num Meth in Fluids, 1987,7(11):1 229-1 234.
  • 3Nedelec J C. Integral equations with non-integrable kernels[J]. Integral Equations and Operator Theory, 1982, 5(1): 562-572.
  • 4Nedelec J C. Equations Integrales, Chapitre XI, Volume 6 [M]//Analyse Mathematique et Calcul Numerique pour les Sciences et les Technique. Paris: Masson, 1984,1985: 666-678.
  • 5Duong T H. A finite element method for the double-layer potential solution of the Neumann exterior problem[J]. Math Meth in the Appl Sci, 1980, 2: 191-208.
  • 6Ghosh N, Rajiyah H, Ghosh S, et al. A new boundary element method formulation for linear elasticity[J]. ASME, Transactions, Journal of Applied Mechanics, 1986, 53: 69-76.
  • 7Sladek V, Sladek J. Regularization of hypersingular and nearly singular integrals in potential theory and elasticity [ J ]. Int J Numer Methods Eng, 1993, 36 (10): 1 609-1 628.
  • 8Tanaka M, Sladek V, Sladek J. Regularization techniques applied to boundary element methods [J]. Appl Mech Rev, 1994, 47(10): 457-499.
  • 9Han Hou-de. Numerical solutions of integro-differential equations for elliptic boundary value problems[J]. Science in China Series A, 1988, 2: 136-145.
  • 10Yu De-hao. Numerical solutions of harmonic and biharmonic canonical integral equations in interior or exterior circular domains [J]. J Comp Math, 1983, 1 (1) : 52-62.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部