期刊文献+

乙二醇和丙三醇二元系玻璃化转变和协同松弛 被引量:2

Glass transition and cooperative relaxation of ethylene glycol and glycerol binary mixtures
下载PDF
导出
摘要 为了估算乙二醇(EG)在慢速降温下的玻璃化转变和协同松弛参数,利用差示扫描量热法(DSC)测量了连续升降温条件下(10K.min-1)乙二醇和丙三醇二元系(EG/G)在玻璃化转变温度Tg前后的表观比热容.利用曲线拟合方法得到了EG/G基于Adam-Gibbs(AG)模型的协同松弛参数.结果表明,随组分的变化,玻璃化转变温度Tg、玻璃化转变过程中的比热跃迁ΔCp(Tg)、AG模型参数、松弛时间和动力学脆度等均呈规律性变化,据此可外推得到EG的玻璃化转变和AG模型参数.松弛时间和动力学脆度的分析结果表明,EG的动力学脆度比丙三醇的小,二元系动力学脆度的分析结果可以和Tg,ΔCp(Tg),松弛时间分布参数和协同重排域等的分析结果相互印证,从而证明了AG模型作为现象学模型描述EG/G结构松弛的有效性.但在解析EG/G协同重排域的微观参数时,AG理论遇到困难. In order to estimate the glass transition and cooperative relaxation parameters of ethylene glycol (EG) at slow cooling rate, differential scanning calorimetry (DSC) were employed to obtain the apparent specific heat capacities of EG and glycerol Binary mixtures near the glass transition temperatures (Tg). The same cooling and heating rate (10 K · min^-1) was used for all the samples. Nonlinear Adam-Gibbs (AG) relaxation time expression was used to model the calorimetric data and curve-fitting method was used to obtain the AG parameters. The results indicated that Tg, specific heat capacity increment at Tg, △Cp(Tg), AG model parameters, relaxation time and dynamic fragility changed regularly with the variation of the composition of binary mixtures. This makes it possible to estimate the parameters of pure EG by short linear extrapolation. The calculation of relaxation time and dynamic fragility (m) indicated that EG is somewhat "stronger" than glycerol and this is consistent with Tg, △Cp (Tg) and non-exponential parameter analysis. The results confirmed that AG model can be used as a valid expression for phenomenological description of EG/G binary mixtures. But this model can not produce physically reasonable micro-parameters of cooperative rearranging regions (CRRs) in AG sense.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2007年第11期1433-1438,共6页 JUSTC
基金 安徽省自然科学基金(070414163)资助.
关键词 乙二醇 丙三醇 玻璃化转变 协同松弛 差示扫描量热法 ethylene glycol glycerol glass transition cooperative relaxation differential scanningcalorimetry (DSC)
  • 相关文献

参考文献22

  • 1Hallbrucker A, Mayer E. Vitrified dilute aqueous solutions Ⅱ: Thermal behavior of hyperquenched NaCLH2O and ethylene glycol-H2O glasses [J]. Journal of Physical Chemistry, 1988,92 : 2 007-2 012.
  • 2Gao C, Zhou G Y, Xu Y, et al. Glass transition and enthalpy relaxation of ethylene glycol and its aqueous solution[J]. Thermochimica Acta, 2005, 435:38 43.
  • 3Angell C A, Smith D L. Test of the entropy basis of the Vogel TammannFulcher equation. Dielectric relaxation of polyalcohols near Tg [J]. Journal of Physical Chemistry. 1982, 86:3 045-3 852.
  • 4Takeda K, Yamamuro O, Tsukushi I, et al. Calorimetric study of ethylene glycol and 1, 3- propanediol: Configurational entropy in supercooled polyalcohols [J]. Journal of Molecular Structure, 1999, 479: 227 -235.
  • 5Takeda K, Murata K, Yamashita S. Thermodynamic investigation of glass transition in binary polyalcohols [J]. Journal of Non-Crystalline Solids, 1998, 231: 273-279.
  • 6Hodge I M. Enthalpy relaxation and recovery in amorphous materials [J]. Journal of Non-Crystalline Solids, 1994, 169: 211-266.
  • 7Moynihan C T, Crichton S N, Opalka S M. Linear and non-linear structural relaxation[J]. Journal of NonCrystalline Solids, 1991, 131-133: 420-434.
  • 8Adam G, Gibbs J H. One the temperature dependence of cooperative relaxation properties in glass-forming liquids[J]. Journal of Chemical Physics, 1965, 43: 139 -146.
  • 9Saiter A, Devallencourt C, Salter J M, et al. Fragility behavior of melamine formaldehyde three dimensional network[J]. Materials Letters, 2000, 45: 180-185.
  • 10Gibson G E, Giauque W F. The third law of thermodynamics: Evidence from specific heats of glycerol that the entropy of a glass exceeds that of a crystal at the absolute zero[J]. Journal of American Chemical Society, 1923, 45: 93-104.

二级参考文献33

  • 1高才,王文华,胡桐记,胥义,周国燕,华泽钊.不同结晶度的乙二醇及其水溶液玻璃化转变与焓松弛[J].物理化学学报,2004,20(7):701-706. 被引量:17
  • 2高才,周国燕,胥义,胡桐记,华泽钊.丙三醇浓溶液玻璃化转变与结构松弛参数DSC分析[J].Chinese Journal of Chemical Physics,2005,18(3):457-462. 被引量:8
  • 3高才,周国燕.丙三醇水溶液玻璃结构松弛现象学研究[J].物理化学学报,2005,21(8):909-914. 被引量:7
  • 4Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.;Martin, S. W. J. Appl. Phys., 2000, 88(6): 3113
  • 5Franks, F. Biophys. Chem., 2003, 105:25
  • 6Pikal, M. J. Mechanisms of protein stabilization during freeze-drying and storage: the relative importance of the thermodynamics stabilization and glassy state relaxation dynamics.In: Freeze-drying of pharmaceutical and biology products.Louis Ray et al. ed. New York, Baseal:Marecl Dekker, Inc. 1999
  • 7Boutron, P.; Kaufmann, A. Cryobiology, 1979, 16(6): 557
  • 8Mehl, P. M. Thermochim. Acta., 1992, 203 : 475
  • 9Jabrane, S.; Letoffe, J. M.; Claudy, P. Thermochim. Acta, 1998,311:121
  • 10Gao, C.; Zhou, G. Y.; Xu, Y.; Hua, T. C. Thermochim. Acta, 2005,435:38

共引文献3

同被引文献3

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部