期刊文献+

非平衡磁控溅射技术制备用于红外减反射的无氢碳膜(英文) 被引量:2

Hydrogen-free Carbon Films by Unbalanced Magnetron Sputtering for Infrared Anti-reflection Coatings
下载PDF
导出
摘要 红外减反射保护膜具有特定的厚度要求,如能进一步减小无氢类金刚石膜(DLC)的光学吸收,就能使其在较大厚度时不过分损失光通量而得以广泛应用。从这点来讲,无氢类金刚石膜是一种极具开发潜力的材料。本文采用非平衡磁控溅射技术(UBMS)制备了无氢类金刚石膜,并研究了其厚度均匀性。研究结果表明:该非平衡磁控溅射装置有能力获得大于Φ150mm的均匀性范围。对DLC膜红外透射谱的分析表明,分别在Si和Ge基底表面单面制备的DLC薄膜,其峰值透射率在波数2983/cm时分别为68.83%和63.05%,这一结果接近无吸收碳材料理论上所能达到的值。同时,在5000到800/cm范围内,未发现明显的吸收峰。这些优良的光学特性表明,采用非平衡磁控溅射技术制备的无氢DLC膜可以作为窗口的红外增透保护膜使用。 The hydrogen-free diamond-like carbon (DLC) films are potential materials to be used as infrared anti-reflection protective coatings if their optical absorption can be reduced to get relatively thick films needed. In this study, hydrogen-free DLC films were deposited in an unbalanced magnetron sputtering (UBMS) system. The results of film thickness uniformity showed that this system is capable of depositing uniform films larger than 150 mm in diameter. The infrared transmission spectra of DLC films indicating that transparent films were obtained in the infrared region for the single side DLC coated on the silicon and germanium substrates, and about 68.83% and 63.05% transmittance were achieved respectively at the wave number of 2983 /cm, close to theoretical value for non-absorption carbon material. No obvious absorption peaks were found between 5000 and 800 /cm. These excellent characteristics show that the hydrogen-free DLC films prepared in the UBMS system were suitable for infrared transmission enhancement applications.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2007年第6期850-853,共4页 Journal of Materials Science and Engineering
关键词 类金刚石膜(DLC) 非平衡磁控溅射(UBMS) 厚度均匀性 物理气相沉积(PVD) diamond-like carbon films (DLC). unbalanced magnetron sputtering (UBMS) thickness uniformity physical vapor deposition(PVD)
  • 相关文献

参考文献26

  • 1J. Robertson.[J ]. Materials Science and Engineering Reports, 2002, 37:129 - 281.
  • 2Sudheer Kumar, C. M. S. Rauthan, et al. [J]. Vacuum, 2001, 63 (3) : 433 - 439.
  • 3T. V. Semikina, A. N. Shmyryeva. [J]. Diamond and Related Materials, 2002, 11(7): 1329- 1331.
  • 4N. V. Novikov, A. G. Gontar, et al. [ J ]. Diamond and Related Materials, 2000, 9(3-6): 792- 795.
  • 5O. M. Kutsay, A. G. Gontar, et al. [ J ]. Diamond and Related Materials, 2001, 10(9-10): 1846- 1849.
  • 6G.F. Zhang, X. Zheng. [J]. Surface and Coatings Technology, 1996, 82(1-2): 110- 113.
  • 7M. Pandey, D. Bhatacharyya, et al. [J]. Journal of Alloys and Compounds, 2005, 386(1 - 2): 296- 302.
  • 8M. Veres, M. Koos, I. Pocsik. [J]. Diamond and Related Materials, 2002, 11(3-6): 1110- 1114.
  • 9N.A. Sanchez, C. Rincon, et al.[J]. Thin Solid Films, 2000, 373(1-2) : 247 - 250.
  • 10H. Inaba, S. Fujimaki, et al.[J]. Vacuum, 2002, 66(3-4): 487 - 493.

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部