期刊文献+

关于弱自避免字的注记

On Weakly Self-Avoiding Words
下载PDF
导出
摘要 文章将给出两个元素字母表上的极大弱自避免字的完整刻画,同时给出三个元素字母表Σ3上,满足条件:x1[1]=2,2-1x1∈Σ2ω的无限弱自避免字x1=20012010150130111017012301150…,其中(20)-1x1中0的位置由序列fn决定:f2n+1=52n-2(n≥0),f2n=82n-1-2(n≥1). In this paper,we shall obtain all maximun weakly self-avoiding words on Σ2 and moreover we shall provide an infinite weakly self-avoiding words x on Σ3 such that x[1]=2,2-1x∈Σω2 and x=20012010150130111017012301150…,where the positions of character 0 in the sequence(20)-1x are determined by the sequence fn:f2n+1=52n-2(n≥0),f2n=82n-1-2(n≥1).
作者 黄允宝
出处 《杭州师范学院学报(自然科学版)》 2007年第6期401-405,共5页 Journal of Hangzhou Teachers College(Natural Science)
关键词 子字 自避免字 弱自避免字 极大弱自避免字 subword self-avoiding word weakly self-avoiding word maximun weakly self-avoiding word
  • 相关文献

参考文献3

  • 1[1]Friedman H.Long Finite Sequences[J].Journal of Combinatorial Theory,Series A,2001,95:102-144.
  • 2[2]Friedman H.Enormous integers in real life[J/OL].[2007-06-20].Manuscript,Dated June 2000(1),http://www.math.ohio.-state.edu/foundations/Manuscripts.html.
  • 3[3]Jeffrey Shallit,Wang Ming-wei.Weakly Self-Avoiding Words and a Construction of Friedman[J].The electronic Journal of Combinatorics,2001,8(2):1-4.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部