期刊文献+

模式生成系统同宿环全局分岔问题研究

Study on the Homoclinic Orbit Bifurcations in Pattern Formation System
下载PDF
导出
摘要 对一维Gray-Scott模型中脉冲自我复制的精细全局动力学结构进行了数值探索,分析了奇异同宿稳定解及其分岔问题。结果发现,与系统相应的常微分方程的解在余维2分岔时具有组织特征,并由其产生与偏微分方程孤波解对应的2环或n环同宿轨。对全局分岔图的分析发现,自我复制系统动力学特性与参数空间中折叠分岔的层次结构密切相关。数值结果表明,Bogdanov-Takens分岔点及对应于某一同宿轨的角状形参数域对系统的周期轨、同宿轨、全局分岔以及复杂混沌动力学具有决定性作用。数值仿真过程揭示反应扩散系统中存在调制的2脉冲及多脉冲解,并伴随有脉冲自我复制及分裂过程。 Singular homoclinic stationary solutions and its bifurcations in the one-dimensional Gray-Scott model were carried out, A careful analysis of the scenario of the global bifurcation diagram suggests that the dynamics of self-replicating system is related to a hierarchy structure of folding bifurcation branches in parameter regions. The numerics suggests the Bogdanov-Takens points together with a presence of critical points emanating from the particular codimension-two homoclinic orbit play a central role for global bifurcation of periodic obits and the homoclinic solutions and the complex chaotic dynamics. Numerical simulation also reveals the existence of the modulating two-pulse or multi-pulse, which companying the procedure of pulse self-replicating in reaction-diffusion systems.
作者 岳宝增
出处 《科技导报》 CAS CSCD 2007年第23期23-27,共5页 Science & Technology Review
基金 国家自然科学基金项目(10572022 10772026) 中国留学基金项目
关键词 全局分岔 脉冲解 同宿环 反应扩散系统 global bifurcation pattern formation homoclinic orbit pulse
  • 相关文献

参考文献30

  • 1SMALE S. Differentiable dynamical systems[J]. Bulletin of the American Mathematical Society, 1997, 73: 747-817.
  • 2DOELMAN A, GARDNER R A, KAPER T J. Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach [J]. Physica D, 1998. 122: 1-36.
  • 3NISHIURA Y, UEYAMA D. A skeleton structure for self- replication dynamics[J]. Physica D, 1999, 130: 73-104.
  • 4DOELMAN A, ECKHAUS W, KAPER T J. Slowly- modulated two-pulse solutions in the Gray-Scott model: Geometric theory, bifurcations, and splitting dynamics[J]. SlAM Journal on Applied Mathematics, 2001, 61: 2036- 2062.
  • 5DOELMAN A, KAPER T J, PELETIER L A. Homoclinic bifurcation at the onset of pulse self-replication[J]. Journal of Differential Equations, 2006, 231: 359-423.
  • 6NISHIURA Y, UEYAMA D. Self-replication, self- destruction and spatio-temporal chaos in the Gray-Scott model[J]. Physical Review Letters, 2000, 15: 281-289.
  • 7HALE J K, PELETIER L A, TROY W C. Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis [J]. SIAM Journal on Applied Mathematics, 2000. 61: 102-130.
  • 8TAKAGI H, KANEKO K. Pattern dynamics of a multi- component reaction diffusion systems: differentiation of replicating spots [J]. International Journal of Bifurcation and Chaos. 2002, 12: 2579-2589.
  • 9DOEDEL E J, PAFFENROTH R C, CHAMPNEYS A R, et al. Auto 2000: Continuation and bifurcation software for ordinary differential equations (with HOMOCONT)[R]. Technical Report, Concordia University, 2002.
  • 10DOELMAN A, HOLMES P. Homoclinic explosions and implosions [J]. Philosophical Transactions of the Royal Society of London, ser A, 1996, 354: 845-893.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部