期刊文献+

SD振子、吸引子的转迁过程及其特性 被引量:1

Advances in Studies on the SD Oscillator and the Attractors
下载PDF
导出
摘要 SD振子及SD吸引子的动力学行为决定于一个光滑参数α的连续变化。当α>0时,系统表现为光滑特征;当α=0时,系统表现为不连续特性。这是一个具有强非线性特征的振动系统,它提供了一个从光滑动力学行为向不连续动力学行为光滑转迁的典型示范,这种直接的转迁并不需要连续系统的过渡。当系统为光滑动力学性态时,表现出与Duffing系统类似的双井等标准动力学行为;当系统表现为不连续性态时,除表现为标准的双井动力学行为外,也表现出如类鞍点和类同宿轨道等非标准动力学行为,展示了这个系统的转迁过程和特性及其相应的吸引子的复杂动力学行为。 In this paper a new oscillator named the SD oscillator is proposed. The perturbed attractors are called the SD attractors, The dynamics of this oscillator depends on the smooth transition of a smooth parameter α. The oscillator behaves smoothly if the parameter α is greater than zero and it behaves with discontinuity if α=0. This oscillator is of strong non-linearity and serves as an example of transition from smooth dynamics to that of discontinuity. The standard dynamics of double-well can be seen as a smooth system, similar to Duffing system. In addition to the standard dynamics, the discontinuous system behaves as non-standard dynamics, with so-called the saddle-like singularity and homoclinic-like orbit.
出处 《科技导报》 CAS CSCD 2007年第23期33-37,共5页 Science & Technology Review
基金 石家庄铁道学院重点课题资助项目(811025)
关键词 SD振子 SD吸引子 Lypunov指数 类鞍点 类同宿轨道 SD oscillator, SD attractor Lypunov exponent saddle-like equilibrium homoclinic-like orbit
  • 相关文献

参考文献31

  • 1PAVLOVSKAIA E E, WIERCIGROCH M, WOO K-C, et al. Modelling of ground moling dynamics by an impact oscillator with a frictional slider [J]. Meccanica, 2003, 38:85-97.
  • 2PAVLOVSKAIA E E, KARPENKO E V, WIERCIGROCH M. Nonlinear dynamic interactions of a Jeffcott rotor with a preloaded snubber ring[J]. J Sound Vib, 2004, 276: 361- 379.
  • 3BANERJEE S, CHAKRABARTY K. Nonlinear modeling and bifurcations in the boost converter [J]. IEEE Trans on Power Electronics, 1998, 13(2): 252-260.
  • 4BANERJEE S, OTT E, YORKE J A, et al. Anomalous bifurcations in DC-DC converters: boderline collisions in piecewise smooth maps[C], Power Electronics Specialists Conference. The 28th Annual IEEE, 1997,2:1337-1344.
  • 5SLOTINE J J, SASTRY S S. Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators[J]. International Journal of Control, 1983, 38 (2): 465-492.
  • 6RICHARD P Y, CORMERAIS H, BUISSON J. A generic design methodology for sliding mode control of switched systems [J]. Nonlinear Analysis, Theory, Methods and Applications, 2006, 65(9): 1751 - 1772.
  • 7LUO A, BURKHARDT H. Intensity-based cooperative bidirectional stereo matching with simultaneous detection of discontinuities and occlusions [J]. International Journal of Computer Vision, 1995, 15(3): 171-188.
  • 8NISHITA T, SEDERBERG T W, KAKIMOTO M. Ray tracing trimmed rational surface patches [J]. Computer Graphics (ACM), 1990, 24(4): 337-345.
  • 9GU X, HE Y, QIN H. Manifold splines [J]. Graphical Models, 2006, 68(3): 237-254.
  • 10KRIBS-ZALETA C M. To switch or taper off: The dynamics of saturation [J]. Mathematical Biosciences, 2004, 192(2): 137-152.

二级参考文献16

  • 1Filippov A F. Differential Equations with Discontinuous Right-Hand Sides[M]. Kluwer Academic Publishers, 1988.
  • 2Feigin M I. Forced Vibrations of Nonlinear Systems with Discontinuities [M]. Nauka: Moscow. In Russian, 1994.
  • 3Kunze M. Non-Smooth Dynamical Systems[M]. New York: Springer-Verlag, 2000.
  • 4Peterka F. Introduction to Vibration of Mechanical Systems with Internal Impacts [M]. Academia Publishing House: Prague. In Czech, 1981.
  • 5Shaw S W, Holmes P J. A periodically forced piecewise linear oscillator [J]. J. Sound and Vibration, 1983,90(1):129--155
  • 6Nordmark A B. Non-periodic motion caused by grazing incidence in an impact oscillator [J]. J. Sound Vib., 1991,145:279--297.
  • 7Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Archetypal oscillator for smooth and discontinuous dynamics[J]. Phys. Rev., 2006, E74, 046218.
  • 8Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics[J]. Phil.Trans. R. Soc. A:Doi:10. 1098/rsta. 2007. 2115, 2007.
  • 9Thompson J M T, Hunt G W. A General Theory of Elastic Stability[M]. London:John Wiley & Sons, 1973.
  • 10Guckenheimer J, Holmes P. Nonlinear Oscillation. Dynamica System and Bifurcation of Vector Fields [M]. New York: Spinger-Verlag, 1983.

共引文献8

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部