摘要
通过引入一个独立的变量t和一个未知的函数w(t),给出了关于f(η)的三阶非线性边值问题f(η)+(1+λ)f(η)f″(η)+2λ[1-f′(η)]f′(η)=0,0η<+∞.f(0)=0,f′0)=β,f′(+∞)=1,的奇异积分形式,并得出上面方程凸解和凹解的不存在结果.
By introducing a new independent variable t and a new lar integral forms to the following third-order nonlinear boundary value problems for f(η): f′″(η) +(1+λ )f(η)f″(η) + 2λ [ 1 -f′(η)f′(η) = 0, 0≤η〈+∞ f(0)=0,f′(0)=β,f′(+∞)=1
are presented and new non-existence results of the convex solution and concave solution are obtained.
出处
《成都信息工程学院学报》
2007年第6期757-759,共3页
Journal of Chengdu University of Information Technology
关键词
混合对流方程
积分形式
奇异
mixed convection equation
integral form
singularity