期刊文献+

利用MC-ICPMS对水样中硼同位素比值的测定 被引量:14

Determination of boron isotope ratios in aqueous samples by multiple collector ICP-MS
下载PDF
导出
摘要 采用Amberlite IRA-743硼特效树脂进行水溶液中硼的分离,对洗脱液温度、体积以及树脂动态交换容量等进行了实验。它的动态交换容量为4.2mg/g,在室温条件下,用5mL2%HNO3可定量从树脂柱上洗脱被吸附的硼。采用Neptune型MC-ICPMS进行硼同位素组成的测定,1μg/g浓度的硼标准溶液获得放大的信号强度约为0.7V,硼的化学分离过程有效避免了质量歧视效应。实验结果表明,MC-ICPMS对硼存在严重的记忆效应,通过采用5%HNO3-(1%HNO3+0.1%HF)-H2O-20% NH3H2O-H2O的交替清洗方法,可在约1h内消除硼的记忆效应。在最佳仪器条件下,对含有250ng硼的水样,可以快速测定硼的同位素组成,δ11B测定的绝对偏差为0.4‰~0.5‰(SD)。 Boron can be separated from aqueous samples with Amberlite IRA-743 resin. And the tests on the temperature and the volume of elute and the dynamic exchange capacity of the resin are finished. The dynamic exchange capacity of the resin is 4. 2 mg/g. In room temperature 5 mL 2% HNO3 can quantitatively extracted boron fixed on the resin. Boron isotope ratios are measured using Neptune MC-ICPMS. The magnified signal intensity of 1 μg/g B standard solution is 0. 7 V. The separation processes of B can effectively avoid mass bias. The results indicate that there are serious memory effects on boron in MC-ICPMS and these effects can be solved by carrying out an alternate wash process with 5% HNO3-(l% HNO3 +0. 1% HF) -H2O-20% NH3H2O-H2O in about 1 h. Under the optimal conditions of the instrument, it is possible to measure boron isotope ratios in the aqueous sample containing 250 ng boron with a precision of ±0.4‰-0.5‰(SO).
出处 《地球化学》 CAS CSCD 北大核心 2008年第1期1-8,共8页 Geochimica
基金 国家重点基础研究发展计划项目(2002CB412606)
关键词 硼同位素 Ambedite IRA-743 MC-ICPMS 水样 boron isotopes Ambedite IRA-743 MC-ICPMS aqueous sample
  • 相关文献

参考文献33

  • 1Aggarwal J K, Palmer M R. Boron isotope analysis: A review[J]. Analyst, 1995, 120(5): 1301-1307.
  • 2Gregoire D C. Determination of boron in fresh and saline waters byinductively coupled plasma mass spectrometry[J]. J Anal At Spectrom, 1990, 5(7): 623-626.
  • 3Gregoire D C. Determination of boron isotope ratios in geological materials by inductively coupled plasma mass spectrometry[J]. Anal Chem, 1987, 59(20): 2479-2484.
  • 4Gabler H E, Bahr A. Boron isotope ratio measurements with a double:focusing magnetic sector ICP mass spectrometer for tracing anthropogenic input into surface and ground water[J]. Chem Geol, 1999, 156(1-4): 323-330.
  • 5Al-Ammar A, Eva Reitznerova E, Barnes R M. Improving boron isotope ratio measurement precision with quadrupole inductively coupled plasma-mass spectrometry[J]. Spectrochim Acta B Atom Spectros, 2000, 55(12): 1861-1867.
  • 6le Roux P J, Shirey S B, Benton L, Hauri E H, Mock T D. In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (^δ11B) at the nanogram level[J]. Chem Geol, 2004, 203(1/2): 123-138.
  • 7Aggarwal J K, Mezger K, Pernicka E, Meixner A. The effect of instrumental mass bias on δ^11B measurements: A comparison between thermal ionisation mass spectrometry and multiple-collector ICP-MS[J]. Int J Mass Spectrom, 2004, 232(3): 259-263.
  • 8Aggarwal J K, Sheppard D, Mezger K, Pernicka E. Precise and accurate determination of boron isotope ratios by multiple collector ICP-MS: Origin of boron in the Ngawha geothermal system, New Zealand[J]. Chem Geol, 2003, 199(3/4): 331-342.
  • 9Leceuyer C, Grandjean P, Reynard B, Albarede F, Telouk P. ^11B/^10B analysis of geological materials by ICP-MS Plasma 54: Application to the boron fractionation between brachiopod calcite and seawater[J]. Chem Geol, 2002, 186(1/2): 45-55.
  • 10Xiao Y K, Beary E S, Fassett J D. An improved method for the high-precision isotopic measttrement of boron by thermal ionization mass spectrometry[J] . Int J Mass Spectrom Ion Process, 1988, 85(2): 203-213.

二级参考文献26

  • 1Nowell G M, Kempton P D, Noble S R, et al. High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: Insights into the depleted mantle. Chem Geol,1998, 149:211~233
  • 2Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J Anal At Spectrom, 2002, 17:1567~1574
  • 3DeBievre P, Taylor P D P. Table of the isotopic composition of the elements. Int J Mass Spectrom, Ion Processes, 1993, 123:149
  • 4Feng R, Machado N, Ludden J. Lead geochronology of zircon by laser-inductively coupled plasma mass spectrometry (ICP-MS).Geochim Cosmochim Acta, 1993, 57:3479~3486
  • 5Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element, and REE analyses. Geostand Newslett, 1995, 19:1~23
  • 6Pidgeon R T, Furfaro D, Kennedy A K, et al. Calibration of zircon standards for the Curtin SHRIMP Ⅱ. Eighth International Conference on Geochronology, Cosmochronology and Isotope Geology (abstract), Berkely June 5-11, 1994:251
  • 7Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem Geol, 2003,200:155~170
  • 8Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards. Chem Geol, 2003, 200:171~188
  • 9Black L P, Kamo S L, Allen C M, et al. Improved 206pb/238U microprobe geochronology by the monitoring of a trace-elementrelated matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol, 2004, 205:115~140
  • 10Kinny P D, Maas R. Lu-Hf and Sm-Nd isotope systems in zircon.In: Hanchar J M, Hoskin P W O, eds. Zircon. Rev Mineral Geochem, 2003, 53:327~341

共引文献111

同被引文献328

引证文献14

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部