摘要
A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults were estimated using an extended states observer(ESO).Firstly,the mathematical model of HVDC system was constructed,where the system states and disturbance were treated as an extended state.An augment HVDC system was established by using the extended state in rectify side and converter side,respectively.Then,a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory.The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances,which can be used for the fault diagnosis purpose.A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance.Finally,different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach.Compared with the neural network based or support vector machine based FDI approach,the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately.What's more important,it needs not do complex online calculations and the training of neural network so that it can be applied into practice.
A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults were estimated using an extended states observer(ESO).Firstly,the mathematical model of HVDC system was constructed,where the system states and disturbance were treated as an extended state.An augment HVDC system was established by using the extended state in rectify side and converter side,respectively.Then,a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory.The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances,which can be used for the fault diagnosis purpose.A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance.Finally,different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach.Compared with the neural network based or support vector machine based FDI approach,the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately.What's more important,it needs not do complex online calculations and the training of neural network so that it can be applied into practice.
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2007年第11期88-93,共6页
High Voltage Engineering
基金
Project Supported by National Natural Science Foundation of China(60574081).
关键词
高压直流输电系统
故障检验与识别
故障诊断
分支状态观测器
fault detection and identification
HVDC
active disturbance rejection
extended states observer
fault diagnosis filter
neural network
support vector machine