期刊文献+

面向工程约束优化的自适应分工微粒群算法

Adaptive division particle swarm optimization for engineering constrained optimization problem
下载PDF
导出
摘要 提出了一种新的算法结构,通过建立"局部环境因数"模型,利用集中式处理模式,动态分配全局勘探和局部开采子种群比例,有效地实现分工目的,平衡算法的局部和全局搜索能力。将其应用到两个不同类型的实际工程约束优化问题中进行验证,并与其他文献的改进算法进行了对比。实验结果表明,该算法比其他改进算法在计算精度、效率、鲁棒性上都有很大的提高。 A new algorithm architecture was proposed. In order to adjust effectively the ratio of exploration subgroup versus exploitation one, the algorithm adopted the centralized processing technique to construct the local environment factor, and balanced the local and global search capabilities of the algorithm. Furthermore, compared with other improved intelligent algorithms, experimental results got from the application and verification of real constrained engineering design problem indicate that the algorithm performs better in terms of accuracy, efficiency and robustness.
出处 《计算机应用》 CSCD 北大核心 2007年第12期2888-2891,2895,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60474077) 教育部新世纪优秀人才支持计划资助项目(NCET-05-0653)
关键词 微粒群算法 约束优化 自适应分工 局部环境因数 Particle Swarm Optimization (PSO) algorithm constrained optimization adaptive division local environment factor
  • 相关文献

参考文献12

  • 1KENNEDY J, EBERHART R. Particle swarm optimization [C]// IEEE International Conference on Neural Networks Conference Proceedings. Piscataway: IEEE Press, 1995:84-88.
  • 2CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1): 58 -73.
  • 3ANGELINE P J. Using selection to improve particle swarm optimization [C]// Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway: IEEE Press, 1998:84-89.
  • 4江瑞,罗予频,胡东成,司徒国业.一种协调勘探和开采的遗传算法:收敛性及性能分析[J].计算机学报,2001,24(12):1233-1241. 被引量:22
  • 5窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 6RAO S S. Engineering optimization [M]. New York: Wiley, 1996.
  • 7DEB K. Optimal design of a welded beam via genetic algorithms [J]. AIAA Journal, 1991, 29(11) : 2013 -2015.
  • 8COELLO C A C. Use of a serf-adaptive penalty approach for engineering optimization problems [J]. Computers in Industry, 2000, 41(2): 113-127.
  • 9COELLO C A C, MONTES M E. Constraint handling in genetic algorithms through the use of dominance-based touraament selection [J]. Advanced Engineering Informatics, 2002, 16(3): 193-203.
  • 10HE Q, WANG L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems [J]. Engineering Applications of Artificial Intelligence, 2007. 20(1) : 89 -99.

二级参考文献6

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部