期刊文献+

一种基于支持向量的镜头聚类算法 被引量:1

Support vector-based shot clustering algorithm
下载PDF
导出
摘要 对支持向量聚类中核区域的形成原理进行了深入分析,阐明了核区域在支持向量聚类进行重叠数据处理时的独特作用。针对视频数据内容存在大量数据重叠分布的特点,提出了一种基于支持向量的镜头聚类算法。利用颜色和时间作为特征向量,计算特征空间的聚类核区域,进而产生镜头聚类,克服了传统镜头聚类算法计算量大、仅以时间阈值判断镜头相似度等缺陷。 The formation theory of the core of support vector clustering was analyzed deeply, which disclosed the particular role of the core in disposing the overlapping data by support vector clustering. And then, a support vector based shot clustering algorithm was proposed according to the features that there are many overlapping data in the video sequences. In the algorithm, color and time were used as feature vectors to calculate the clustering core of feature space, further more, to form shot clustering. The algorithm addresses the problems of traditional shot clustering algorithms such as large amount of computations and using time as the unique threshold to estimate the similarities of shots.
出处 《计算机应用》 CSCD 北大核心 2007年第9期2143-2146,共4页 journal of Computer Applications
关键词 支持向量机 镜头 重叠 聚类 Support Vector Machine(SVM) shot overlapping clustering
  • 相关文献

参考文献8

  • 1BENNETT KP,DEMIRIZ A.Semi-supervised support vector machines[C]// Proceedings of neural information processing systems.Cambridge:MIT Press,1999:368-374.
  • 2SCHOLKOPF B,SMOLA A,MULLER K R.Kernel principal component analysis[C]// Proceedings of International Conference on Artificial Neural Networks Lecture Notes in Computer Science.Berlin:Springer-Verlag,1997:583-588.
  • 3ASA B-H,HORN D,SIEGELMANN HT,et al.Support vector clustering[J].Journal of Machine Learning Research,2001(2):125-137.
  • 4ROBERTS S J.Non-parametric unsupervised cluster analysis[J].Pattern Recognition,1997,30(2):261-272.
  • 5王彦棡,马驷良.基于关键帧提取的视频分割方法[J].吉林大学学报(理学版),2004,42(4):570-571. 被引量:3
  • 6RUI Y,HUANG T S,MEHROTRA S.Exploring video structure beyond the shots[C]// Proceedings of IEEE International Conference on Multimedia Computing and Systems.[S,l.]:IEEE Press,1998:237-240.
  • 7王华伟,施智平,史忠植,胡宏.一种基于子镜头聚类的情节代表帧选取方法[J].计算机工程与应用,2005,41(27):157-159. 被引量:2
  • 8施智平,李清勇,史俊,史忠植.基于关键帧序列的视频片段检索[J].计算机应用,2005,25(8):1783-1785. 被引量:2

二级参考文献20

  • 1施智平,胡宏,李清勇,史忠植,段禅伦.一种快速有效的图像纹理谱描述子[J].计算机辅助设计与图形学学报,2004,16(12):1703-1707. 被引量:13
  • 2Wolf W. Key frame selection by motion analysis[C]. Atlanta: Rodney Andrew Kennedy Inc, 1996, 2: 1228-1231.
  • 3MENG Jian-hao, JUAN Yu-jen, CHANG Shi-fu. Scene change detection in a MPEG compressed video sequence [C]. IS&T/SPIE Symposium Proceedings. New York: Springer-Verlag, 1995, 2419: 14-25.
  • 4ZHANG Hong-jiang, WU Jian-hua, ZHONG Di, et al. An integrated system for content-based video retrieval and brow sing [J]. Pattern Recognition, 1997, 30(4): 643-658.
  • 5Niblack W, Barber R, Equitz W, et al. The QBIC project querying images by content using color, texture, and shape [C]. Proc SPIE. New York: Springer-Verlag, 1993, 1908: 173-187.
  • 6Uchihashi S,Foote J,Girgensohn A et al. Generating semantically meaningly video summaries[C].In :Proceedings of Association for Computing Machinery,Multimedia'99,Orlando,Florida,USA:Association for Computing Machinery Press, 1999:383~392
  • 7史忠植.知识发现[M].北京:清华大学出版社,2004.137-140.
  • 8Rui Y,Huang T S.A Uniform Framework for Video Browsing and Retrieval[C].In:Alan Bovik ed.The Image and Video Processing Handbook,USA:Academic Press,2000:705~715
  • 9施智平 胡宏 李清勇.一种快速有效的图象纹理谱描述子[C]..见:中国计算机大会论文集[C].北京:清华大学出版社,2003.734-739.
  • 10Yeung M ,Yeo B L.Segmentation of video by clustering and graph analysis[J].Computer Vision and Image Understanding, 1998 ;71 ( 1 ):94~109

共引文献4

同被引文献9

  • 1SHEN H T, OOI B C, ZHOU X F. Towards Effective Indexing for very Large Video Sequence Database [ C ]//Proceedings of ACM SIGMOD Int. Conf. on Management of Data, 2005.
  • 2WANG Peng, CAI Rui, YANG ShiQiang. Improving Classification of Video Shots Using Information-theoretic co-clustering: Circuits and Systems [ C ]//ISCAS 2005, IEEE International Symposium on Beijing,2005:964 - 967.
  • 3HANJALIC A, ZHANG Hong-Jiang. An Integrated Scheme for Automated Video Abstraction Based on Unsupervised Cluster-va- lidity Analysis[ C]//IEEE Transactions on Circuits and Systems for Video Technology, Netherlands, 1999 : 1280 - 1289.
  • 4BOTTOU L, BENGIO Y. Convergence Properties of the K-means algorithm[ C ] // Advances in Neural Infor-mation Proeessing Sys- tems 7 Cambridge, America, MIT Press, 1995:585 - 592.
  • 5LI Jinjiang, FAN Hui, YUAN Da, et al. Kernel Function Cluste- ring Based on Ant Colony Algorithm [ C ] //Fourth International Conference on Natural Computation, IEEE 2008 Jinan, 2008:645 -649.
  • 6ZHANG Zhenya, CHENG Hongmei, CHEN Wanli, et al. Corre- lation Clustering Based on Genetic Algorithm for Documents Clus- tering[ C ] //2008 IEEE Congress on Evolutionary Computation Heifei ,2008:3193 - 3198.
  • 7RICHARD Fabera. Dynamic Optimization with Simulated Annea- ling [ J ]. Computers and Chemical Engineering, 2005,29 ( 2 ) : 273 - 290.
  • 8廖嘉,张博,王国仁,李淼.逐步求准的视频镜头聚类算法[J].小型微型计算机系统,2008,29(7):1272-1276. 被引量:1
  • 9刘伟民,郑爱云,李苏剑,赵方庚,孙江生.模拟退火K均值聚类算法及其应用研究[J].微计算机信息,2008,24(21):182-184. 被引量:12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部