期刊文献+

一种多分辨率数据流在线分类算法

Multi-resolution online classification algorithm for data streams
下载PDF
导出
摘要 提出一种能够适应数据流突变式概念变化的增量分类算法,采用网格技术对数据集特征向量进行量化,利用Haar小波多种分辨率的数据表示方式,基于最近邻技术发现测试点的合适类标签。在真实数据集上的测试证明,与已存在的数据流分类算法相比,提出的分类算法精度较高,具有很低的更新代价,适合数据流应用的需求。 An incremental classification algorithm based on nearest neighbor technology, which adapts to the sudden concept shift over data streams, was proposed. The algorithms uses grid technique to quantize the feature space of data set and uses a muhi-resolution data representation based on Hanr wavelets to find adaptive class label of a test point. Experiments performed on both synthetic and real-life data indicate that the proposed classifier outperforms existing algorithms for data streams in terms of accuracy, The algorithm "s low update and computational cost makes it highly suitable for data stream applications.
作者 王全
出处 《计算机应用》 CSCD 北大核心 2007年第10期2372-2375,共4页 journal of Computer Applications
关键词 数据流 分类 最近邻 小波 多分辨率 data streams classification nearest neighbor wavelets multiple resolutions
  • 相关文献

参考文献14

  • 1BABCOCK B,BABU S,MOTAWANI R,et al.Models and issues in data stream systems[C]// Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.Madison:ACM,2002:1-16.
  • 2GOLAB L,OZSU M.Issues in data stream management[J].ACM SIGMOD,2003,32(2):5-14.
  • 3WANG H,FAN W,YU P,et al.Mining concept-drifting data streams using ensemble classifiers[C]// Proceedings of 9th ACM International Conference on Knowledge Discovery and Data Mining(SIGKDD).New York:ACM Press,2003:226-235.
  • 4CHU F,ZANIOLO C.Fast and light boosting for adaptive mining of data streams[C]// Proceedings of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining(PAKDD),LNCS 3056.Berlin:Springer-Verlag,2004:282-292.
  • 5王勇,李战怀,张阳.未知真实类标记条件下数据流中的变化发现方法[J].西北工业大学学报,2006,24(2):209-213. 被引量:1
  • 6HAN J,KAMBER M.Data Mining-Concepts and Techniques[M].Morgan Kaufmann Publishers,2000.
  • 7DOMINGOS P,HULTEN G.Mining high-speed data streams[C]// Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining.New York:ACM Press,2000:71-80.
  • 8HULTEN G,SPENCE L,DOMINGOS P.Mining time-changing data streams[C]// Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining.New York:ACM Press,2001:97-106.
  • 9INDYK P,MOTWANI R.Approximate nearest neighbors:towards removing the curse of dimensionality[C]// Proceedings of the thirtieth annual ACM symposium on Theory of computing.New York:ACM Press,1998:604-613.
  • 10KUSHILEVITZ E,OSTROVSKY R,RABANI Y.Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces[C]//Proceedings of the thirtieth annual ACM symposium on Theory of computing.New York:ACM Press,2000,30(2):457-474.

二级参考文献10

  • 1Chu F, Zaniolo C. Fast and Light Boosting for Adaptive Mining of Data Streams. Proc of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2004, 282-292.
  • 2Klinkenberg R. Learning Drifting Concepts : Example Selection vs Example Weighting Intelligent Data Analysis. Special Issue on Incremental Learning Systems Capable of Dealing with Concept Drift, 2004, 123-131.
  • 3Wang H, Fan W, Yu P , Han J. Mining Concept-Drifting Data Streams Using Ensemble Classifiers. The 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2003, 226-235.
  • 4Dong G, Han J, Lakshmanan L V S, Pei J, Wang H, Yu P S. Online Mining of Changes From Data Streams: Research Problems and Preliminary Results. Proc of the ACM SIGMOD Workshop on Management and Processing of Data Streams, 2003, 359-366.
  • 5Fan W. StreamMiner: A Classifier Ensemble-Based Engine to Mine Concept Drifting Data Streams. Proc of VLDB,2004, 1257-1260.
  • 6Fan Wei, Huang Yian, Wang Haixun. Active Mining of Data Streams. Proc of SIAM International Conference on Data Mining, 2004, 457-461.
  • 7Ben D S. Detecting Change in Data Streams. Proc of VLDB, 2004, 1134-1145.
  • 8Lanquillon C, Renz I. Adaptive Information Filtering: Detecting Changes in Text Streams. Proc of the 8th Int Conf on Information and Knowledge Management CIKM-1999, ACM Press, 1999, 538-544.
  • 9Montgomery D C. Introduction to Statistical Quality Control (3rd Edition). New York: Wiley, 1997.
  • 10Woodall W H, Adamas B M. The Statistical Design of CUSUM Chart. Journal of Quality Engineering, 1993, 29-37.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部