期刊文献+

混沌变异算子的改进遗传算法及其应用 被引量:4

Improved genetic algorithms based on chaotic mutation operation and its application
下载PDF
导出
摘要 为解决标准遗传算法(SGA)收敛缓慢等缺点,提出一种混沌变异算子的改进遗传算法,进化过程中,为防止局部早熟收敛,对较优个体的变异操作中引入一个混沌变异算子,并把混沌运动的遍历范围"放大"到优化变量的取值范围,通过一代代地不断进化,收敛到一个最适合环境的个体上,求得问题的最优解;建立精英个体序列库,防止最优解的丢失。采用实际算例进行仿真试验,仿真结果证明了该算法的有效性。 In order to change the slow convergence of simple genetic algorithms, an improved genetic algorithms based on chaotic mutation operation (named as CGA) was presented. In the evolution process, to avoid local premature convergence, CGA introduced a chaotic mutation operator in the mutation of the optimum individual, and enlarged the scope of chaotic campaign to the range of variables optimization, through the evolution from generation to generation, converged to a individual, which is the most suitable environment, to find the optimal solution; the best individual sequences is to avoid missing the best value. At last the examples were emtdated, and the data make it clear that the CGA is super to SGA.
出处 《计算机应用》 CSCD 北大核心 2007年第10期2490-2492,共3页 journal of Computer Applications
关键词 混沌变异 遗传算法 车间调度 chaotic mutation Simple Genetic Algorithms (SGA) Job-Shop Problem (JSP)
  • 相关文献

参考文献8

  • 1[日]玄光男 陈润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 2GOLDBERG D E.Genetic Algorithms in Search,Optimization and Machine Learning[M].Reading.MA:Addson-Wesley,1989:46-72.
  • 3ESHELMAN L J,CARUANA R A,SCHAFFER J D.Bases in the Crossover Landscape[C]// Proceedings of 3rd International Conference Genetic Algorithms.San Mateo:Morgan Kaufmann,1989:36-52.
  • 4SCHAFFER J D,CARUANA R A,ESHELMAN L J.A study of control parameters affecting online performance of genetical Algorithmsfor function optimization[C]// Proceedings of 3rdInternational Conference Genetic Algorithms.New York:Springer-Verlag,1989:122-136.
  • 5王子才,张彤,王宏伟.基于混沌变量的模拟退火优化方法[J].控制与决策,1999,14(4):381-384. 被引量:77
  • 6TAKESHI Y.Studies on Metaheuristics for Jobshop and Flowshop Scheduling Problems[D].Japan:KYOTO University,2003.
  • 7杨晓梅,曾建潮.采用多个体交叉的遗传算法求解作业车间问题[J].计算机集成制造系统,2004,10(9):1114-1119. 被引量:20
  • 8姚俊峰,梅炽,彭小奇.混沌遗传算法(CGA)的应用研究及其优化效率评价[J].自动化学报,2002,28(6):935-942. 被引量:52

二级参考文献17

  • 1杨若黎,顾基发.一种高效的模拟退火全局优化算法[J].系统工程理论与实践,1997,17(5):29-35. 被引量:101
  • 2HOLLAND J H. Adaptation in natural and artificial systems[M].Ann Arbo, MI,USA:The University of Michigan Press,1975.
  • 3DAVIS L .Job shop scheduling with genetic algorithms[A]. Proceedings of the 1st International conference on Genetic Algorithm[C].Pittsburgh,PA,USA:Camegie Mellon University,1985.13-140.
  • 4MOON I, LEE J. Genetic algorithm application to the job shop scheduling problem with alternative routings[EB/OL].http://logistics.ie.pusan.ac.kr/bkz1/pdf/jelee.pdf,2000.
  • 5GAREY E L, JOHNSON D S,SETHI R.The complexity of flowshop and job-shop scheduling[J]. Mathematics of Operations Research,1976,1(2):117-129.
  • 6ORVOSH D,DAVIS L. Using a genetic algorithm to optimize problems with feasibility constraints[A].Proceedings of the First IEEE Conference on Evolutionary Computation[C]. New York,WA,USA:IEEE Service Center. 1994. 548-553.
  • 7AYALA F J,KIGER J A Jr. Modern genetics[M]. CA,USA:The Benjamin/Cummings Publishing Company, Inc.1984.
  • 8MUTH J F,THOMPSON G. Industrial scheduling[M]. NJ,USA:Prentice Hall, Englewood Cliffs, 1963.225-251.
  • 9LAWRENCE S.Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques[D]. Pittsburgh,PA,USA:School of Industrial Administration, Carnegie Mellon University,1984.
  • 10Lin Fengtse,IEEE Trans Syst Man Cybern,1993年,23卷,6期,1752页

共引文献191

同被引文献42

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部