期刊文献+

改进的基于高斯混合模型的运动目标检测方法 被引量:39

Improved moving objects detection method based on Gaussian mixture model
下载PDF
导出
摘要 针对固定摄像机的视频监控系统,提出了一种改进的基于混合高斯模型的运动目标检测方法。在模型学习方面,均值与方差采用了不同的学习率,其中均值更新采用自适应的学习率,方差的学习率取固定值;引入权值均值概念,然后结合权值进行像素点的前景和背景分类;利用了背景图像消除阴影。实验结果表明,改进的方法与传统方法相比具有更好的学习能力,能提高在繁忙场景中,大而慢的运动目标检测的正确率。 This paper proposed an improved moving objects detection method based on Gaussian mixture model in the case of focusing on a video monitoring system with a static camera. First, for updating the parameters ( mean and variance) of the Gaussian models, the learning rates of mean and variance were different: for mean, the learning rate was adaptive, while for variance, the learning rate was fixed; Second, The notion of Mean Of the Weight (MOW) was introduced, which had a big contribution for differentiating background points from foreground points. Third, Shadow was detected and removed with the help of background image. Experimental results show that the proposed method possesses better ability of learning and higher efficiency of detecting large and slow objects in busy environments .
出处 《计算机应用》 CSCD 北大核心 2007年第10期2544-2546,2548,共4页 journal of Computer Applications
关键词 运动检测 高斯混合模型 学习率 权值均值 motion detection Gaussian mixture model the learning rate the mean of the weight
  • 相关文献

参考文献11

  • 1GRIMSON W,STAUFFER C,ROMANO R.Using adaptive tracking to classify and monitor activities in a site[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,1998:22-31.
  • 2STAUFFER C,GRIMSON W.Adaptive background mixture models for real time tracking[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Fort Collins:IEEE Press,1999,2:246-252.
  • 3STAUFFER C,GRIMSON W.Learning patterns of activity using real-time tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747-757.
  • 4KAEWTRAKULPONG P,BOWDEN R.An improved adaptive background mixture model for real-time tracking with shadow detection[C]// The 2nd European Workshop on Advanced Video-based Surveillance Systems.Kingston:Kluwer Academic Publishers,2001:149-158.
  • 5POWER P W,SCHOONEES J A.Understanding background mixture models for foregrounds segmentation[C]// Proceedings of Image and Vision Computing.New Zealand:Auckland,2002:267-271.
  • 6LEE D S,HULL J,ERPL B.A Bayesian framework for Gaussian mixture background modeling[C]// Proceedings of IEEE International Conference on Image Processing.New York:IEEE Press,2003:973-976.
  • 7GAO X,BOULT T,COETZEE F.Error analysis of background adaption[C]// Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.USA:IEEE Press,2000:503-510.
  • 8CUCCHIARA R,GRANA C,PICCARDI M,et al.Improving shadow suppression in moving object detection with HSV color Information[C]// Proceedings of IEEE Intelligent Transportation Systems Conference,Oakland:IEEE Press,2001:334-339.
  • 9LEE D-S.Online Adaptive Gaussian Mixture Learning for Video Applications[C]// Statistical Methods in Video Processing,LNCS 3247.2004,3247:105-116.
  • 10刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23

二级参考文献51

  • 1徐君丽,刘冀伟,王志良,郭建波.基于无线网络的智能监控系统设计与实现[J].微计算机信息,2005,21(06S):5-7. 被引量:34
  • 2M.Harville, G.Gordon, J.Woodfill. Foreground Segmentation Using Adaptive Mixture Models in Color and Depth. Proc. ICCV Workshop Detection and Recognition of Events in Video. 2001
  • 3M.A.Sato, S.Ishii. Online EM Algorithm for the Normalized Gaussian Network. Neural Computation. 1999, 12:407-432
  • 4Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 5Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 6Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 7Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 8Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 9Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 10Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.

共引文献188

同被引文献258

引证文献39

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部