期刊文献+

基于小波技术的网络流量分析与刻画 被引量:1

Analysis and depiction of network traffic based on wavelet technique
下载PDF
导出
摘要 大量研究结果表明实际网络流量具有明显的尺度特性,在大尺度上表现出自相似,在小尺度上表现出多重分形。多重分形为刻画流量在小尺度上的奇异性提供了良好的数学框架,而小波变换对具有长程依赖性的流量起到了去相关的作用,因此有必要利用小波技术来研究多重分形。为了能全面有效地刻画现代网络特征,利用小波技术对实际流量进行分析,首先判断流量的全局特性与局部特性,然后对流量进行不同分组,分别采取组内打乱和组间打乱顺序的方法,深入探讨影响多重分形的因素,最后发现均值和方差对多重分形有较大影响。 Many research studies have proposed scaling of real network traffic has a notable effect on the network performance: the self-similar phenomena over large scale, the multi-fractal phenomena over small scale. As multi-fractal providing the upstanding frame of mathematics to depict the singularity of traffic over small scale, and the wavelet transform taking effect on un-correlation to the traffic which is long range dependent, it is necessary to research the muhi-fractal model based on wavelet technique. The multi-scale provides the new method to study the characteristics of traffic. In order to depict the characteristics of modem network, the real traffic based on the wavelet technique was analyzed, and the global characteristics and local characteristics of traffic were judged at first. Then, the traffic was divided into blocks, and the traffic between inner block and outer block was mixed. At last, when studying the factors which have impact of the multi-fractal on the traffic, it is found that, the mean and variance have impact of multi-fractal on the traffic.
出处 《计算机应用》 CSCD 北大核心 2007年第11期2659-2661,2665,共4页 journal of Computer Applications
基金 国家自然科学资金资助项目(90104002) 西南交通大学科学研究基金项目(2005A03)
关键词 自相似 多重分形 小波 Hurst系数 self-similarity multi-fractal wavelet Hurst index
  • 相关文献

参考文献5

二级参考文献21

  • 1吴甘沙.基于测量和分析的Internet网络模拟及其实现[D].上海:复旦大学,2000.
  • 2[1]Feldmann,A.,Gilbert,A.C.,Willinger,W.Data networks as cascades:investigating the multifractal nature of Internet WAN traffic.In:Steenstrup,M.,ed.Proceedings of the ACM/SIGCOMM'98.New York:ACM Press,1998.42~55.
  • 3[2]Feldmann,A.,Gilbert,A.C.,Willinger,W.,et al.The changing nature of network traffic:scaling phenomena.Computer Communication Review,1998,28(2):5~29.
  • 4[3]Gilbert,A.C.,Willinger,W.,Feldmann,A.Scaling analysis of random cascades,with applications to network traffic.IEEE Transactions on Information Theory,1999,45(3):971~991.
  • 5[4]Goncaves,P.,Riedi,R.,Baraniuk,R.Simple statistical analysis of wavelet-based multifractal spectrum estimation.In:Abry,P.,Veitch,D.,eds.Proceedings of the 32nd Conference on Signals,Systems and Computers.Pacific Grove:CA,1998.109~121.
  • 6[5]Riedi,R.,Crouse,M.,Ribeiro,V.,et al.A multifractal wavelet model with applications to network traffic.IEEE Transactions on Information Theory,1999,45(3):991~1018.
  • 7[6]Taqqu,M.S.,Teverovsky,V.,Willlinger,W.Is network traffic self-similar or multifractal? Fractals,1997,5(1):63~73.
  • 8[7]Daubechies,L.Ten Lectures on Wavelets.Philadelphia,PA:Society of Industry and Applied Mathematics,1992.
  • 9[8]Floyd,S.NS.1998.http://www-mash.CS.Berkeley.EDU/ns.
  • 10NORROS I. On the use of fractional Brownian motions in the theory of connectionless networks[J]. IEEE JSAC, 1995, 13:953-962.

共引文献38

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部