期刊文献+

一种基于密度的面向线段的聚类算法

Line oriented clustering algorithm based on density
下载PDF
导出
摘要 分析了密度聚类算法(DBSCAN)的局限性,在此基础上提出了一种基于密度的面向线段的聚类方法,将DBSCAN中聚类的对象由点转变为线段。在对点聚类的基础上,研究了线段聚类的特点。该算法可以有效处理分布不均匀的线段对象集,发现分布密度不同的各种簇。通过试验证明了该方法的可行性与有效性。 After analyzing the deficiencies of the traditional clustering algorithm DBSCAN (Density Based Spatial Clustering of Applications with Noise), a line oriented clustering method based on DBSCAN was proposed. The object clustered changed from the point to the line. The characteristics of line oriented clustering method were studied based on the point oriented clustering method. The algorithm can deal with irregular line sets and find out clusters with different densities. It is proved to be workable and validated by a test.
出处 《计算机应用》 CSCD 北大核心 2007年第11期2760-2762,2780,共4页 journal of Computer Applications
关键词 DBSCAN 聚类 面向线段的聚类 对象 Density Based Spatial Clustering of AppLications with Noise (DBSCAN) cluster line oriented clustering object
  • 相关文献

参考文献8

  • 1CHENM-S,HAN J,YU P S.Data mining:An overview from a database perspective[J].IEEE Transactions on Knowledge and Data Engineering,1996,8(6):866-883.
  • 2罗可,蔡碧野,吴一帆,谢中科,张丽.数据挖掘中聚类的研究[J].计算机工程与应用,2003,39(20):182-184. 被引量:31
  • 3李伟,黄颖.文本聚类算法的比较[J].科技情报开发与经济,2006,16(22):234-236. 被引量:4
  • 4石陆魁,何丕廉.一种基于密度的高效聚类算法[J].计算机应用,2005,25(8):1824-1826. 被引量:21
  • 5SANDER J,ESTER M,KRIEGEL H-P,et al.Density-based clustering in spatial database:The algorithom GDBSCAN and its application[R].Germany:Institute for Computer Science,1999.
  • 6ESTER M,KRIEGEL H-P,SANDER J.Knowledge discovery in spatial databases[R].Germany:Institute for Computer Science,1999.
  • 7HAN J,KAMBER M.数据挖掘:概念与技术[M].范明,孟晓峰,等译.北京:机械工业出版社,2003:242-243.
  • 8SHIH C-L,LIU J-Y.Computing the minimum directed distances between convex polyhedra[J].Journal of Information Science and Engineering,1999,15(3):353-373.

二级参考文献26

  • 1A K Jain,M N Murty,P J Flynn.Data clustering:A survey[J].ACM Computer Surv, 1999 ;31 : 264-323.
  • 2R Agrawal,J Gehrke,D Gonopolos et al.Automatic subspace clustering of high dimensional data for data mining applications[C].In :Proc 1995 ACM-SIGMOD Int Conf Management of Data,Seattle,WA,.1998:94-105.
  • 3R Agrawal,R Srikant.Privacy-preserving data mining[C].In :Proc 2000 ACM-SIGMOD Int'l Conf.Management of Data,Dallas,TX,2000:439-450.
  • 4P Bradley,U Fayyad,C Reina.Scaling Clustering Algorithms to Large Databases[C].In:Knowledge Discovery and Data Mining,AAAI Press, Menlo Park,Calif, 1998:9-15.
  • 5V Ganti et al.Clustering Large Datasets in Arbitrary Metric Spaces [C].In : Data Engineering, IEEECS Press, Los Alamitos, Calif, 1999 : 502-511.
  • 6M Goebel,L Gruenwald.A survey of data mining and knowledge discovery software tools[J].SIGKDD Explorations, 1999: ( 1 ) :20-33.
  • 7KAUFMAN L, ROUSSEEUW PJ. Finding groups in data: An introduction to cluster analysis[ M]. New York: John Wiley & Sons,1990.
  • 8RAYMOND T NG, HAN JW. CLARANS: A method for clustering objects for spatial data mining[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2002, 14(5): 1003 -1016.
  • 9ZHANGT, RAMAKRISHNAN R, LIVNY M. BIRCH: An efficient data clustering method for very large databases[ A]. Proceedings of the ACM SIGMOD internatioal conference on Management of data[C]. New York: ACM Press, 1996. 103 - 114.
  • 10GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases[ A]. Proceedings of the ACM SIGMOD internatioal conference on Management of data[ C]. New York: ACM Press, 1998.73 - 84.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部