期刊文献+

基于聚类算法的客户分析在通讯行业中的应用研究

Application Study on Clients Analysis in Communication Industry Based on Clustering Arithmetic
下载PDF
导出
摘要 根据某通信运营商经营分析系统的要求,改进并实现了一种新的聚类算法,对该运营商的客户概况进行分析。在运算过程中,滤去与其它类较远且类内数据点较少的噪声数据,消除噪声数据对整体聚类的影响,在一定程度上减少了人为因素的影响。从该系统的实际运行情况看,效率较高,结果可信,达到了客户的要求。 he new clustering arithmetic is ameliorated and implemented, which in on the foundation of a communicate proprietor in this paper. The new clustering arithmetic can wipe offthe useless datas on the course of operation and expedit the velocity of clustering. On the instance of practice circulating, the new clustering arithmetic has a higher efficiency and.a trust result, It satisfies the request of clients.
出处 《长春理工大学学报(自然科学版)》 2007年第4期131-134,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 客户分析 通讯 聚类算法 计算机应用 client analysis communication clustering arithmetic computer application
  • 相关文献

参考文献5

二级参考文献26

  • 1曹旭光,翟慧杰,王中华.基于组件的分布式三层体系结构应用系统研究[J].长春理工大学学报(自然科学版),2005,28(1):71-72. 被引量:1
  • 2范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 3RichardJRoiger MichaelWGeatz著 翁敬农译.数据挖掘教程[M].北京:清华大学出版社,2003..
  • 4Khoo L P,Tor S B,Zhai LY.A Rough-Set-Based Approach for Classification and Rule Induction[J],International journal of Advanced Manufacturing Technology, 1999, 15(1):438-444.
  • 5AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automatic subspace clustering of high dimensional data for data mining application[A]. Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data[C]. New York: ACM Press,1998.94 - 105.
  • 6HINNEBURG A, KEIN DA. An efficient approach to clustering inlarge multimedia databases with noise[A]. Proceedings. of the 4th International Conference oa Knowledge Discovery and Data Mining (KDD'98) [C]. New York: AAAI Press, 1998.58-65.
  • 7ESTER M, KRIEGEL H-P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [A]. Proceedings of the 2nd International Conference On Knowledge Discovery and Data Mining (KDD'96) [C]. Portland: AAAI Press,1996. 226-231.
  • 8JANUZAJ E, KRIEGEL H-P, PFEIFLE M. Density Based Distributed Clustering[A]. Proceedings. of the 9th International Conference on Extending Database Technology[C]. Springer, 2004.88 - 105.
  • 9JANUZAJ E, KRIEGEL H - P, PFEIFLE M. Scalable Density-Based Distributed Clustering[A]. Proceedings of 8th European Conference on Principles and Practice of Knowledge Discovery in Databases(PKDD) [C]. Springer, 2004.231 - 244.
  • 10BECKMANN N, KRIEGEL H-P, SCHNEIDER R, et al. The R * -tree: An Efficient and Robust Access Method for Vector and Rectangles[A]. Proceedings ACM SIGMOD International Conference on Management of Data (SIGMOD'90) [C]. Atlantic City, NJ, New York: ACM Press, 1990. 322-331.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部