摘要
为了加深对等能曲面的拓扑结构的了解,利用正合同调序列及Morse不等式的方法估计了等能曲面一般维数奇异同调群的秩的上界.分别对等能曲面的0维、1维、2维奇异同调群的秩进行了估计,得出了估计不等式,依据0维、1维、2维的估计不等式,归纳出一般维数奇异同调群的秩的上界估计不等式,证明此归纳不等式成立,并将其运用到刚体运动的力学例子中,与前人研究结果对照,验证其正确性.
This paper intends to make us understand topological structures deeply, and it takes advantage of exact homology sequence and Morse inequalities to estimate the upper bound of the rank of q-dimensional singular homology group of energy level surface (q is an arbitrary nature number). It estimates the ranks of 0-dimension, 1-dimension and 2-dimension homology groups, and guesses a formula for the rank of q-dimension singular homology group. It proves that the guess is right and applies it to an example of rigid body dynamics, comparing it with other schol- ars' conclusions. It succeeds in obtaining a new inequality which estimates the upper bound of the rank of q-dimension singular homology group of energy level surface.
出处
《淮海工学院学报(自然科学版)》
CAS
2007年第4期13-16,共4页
Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词
等能曲面
同调群的秩
正合同调序列
MORSE不等式
energy level surface
rank of homology group
exact homology sequence
Morse ine-quality