期刊文献+

Hamilton系统等能曲面之奇异同调群的秩估计

Estimation of Rank of Homology Group of Energy Level Surface on Hamiltonian Systems
下载PDF
导出
摘要 为了加深对等能曲面的拓扑结构的了解,利用正合同调序列及Morse不等式的方法估计了等能曲面一般维数奇异同调群的秩的上界.分别对等能曲面的0维、1维、2维奇异同调群的秩进行了估计,得出了估计不等式,依据0维、1维、2维的估计不等式,归纳出一般维数奇异同调群的秩的上界估计不等式,证明此归纳不等式成立,并将其运用到刚体运动的力学例子中,与前人研究结果对照,验证其正确性. This paper intends to make us understand topological structures deeply, and it takes advantage of exact homology sequence and Morse inequalities to estimate the upper bound of the rank of q-dimensional singular homology group of energy level surface (q is an arbitrary nature number). It estimates the ranks of 0-dimension, 1-dimension and 2-dimension homology groups, and guesses a formula for the rank of q-dimension singular homology group. It proves that the guess is right and applies it to an example of rigid body dynamics, comparing it with other schol- ars' conclusions. It succeeds in obtaining a new inequality which estimates the upper bound of the rank of q-dimension singular homology group of energy level surface.
作者 秦涛
出处 《淮海工学院学报(自然科学版)》 CAS 2007年第4期13-16,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 等能曲面 同调群的秩 正合同调序列 MORSE不等式 energy level surface rank of homology group exact homology sequence Morse ine-quality
  • 相关文献

参考文献8

  • 1古志鸣.非线性空间上的大范围周期轨道之同调类[J].应用数学和力学,1998,19(10):915-920. 被引量:2
  • 2HIRSCH M W. Differential Topology[M]. New York: Springer-Verlag, 1976.
  • 3ABRAHAM R, MARSSDEN J. Foundations of Mechanics[M]. 2nd ed. London: The Benjamin/Cummings Publishing Company. Inc, 1978.
  • 4BOTT R. Lectures on Morse Theory,old and new[J]. Bull Amer Math Soc (New series), 1980, 7 (2): 331- 358.
  • 5ARNOLD V I. Mathematical Methods of Classical Mechanics[M]. New York: Springer-Verlag, 1978.
  • 6MANUEL DE L. Methods of Differential Geometry in Analytical Mechanics[M]. Amsterdam: North-Holland Mathematics Studies, 1989.
  • 7米尔诺 J.Morse理论[M].江嘉禾,译.北京:科学出版社.1988.
  • 8JACOBSON N. Basic Algebra Ⅰ[M]. San Francisco: W. H. Freeman and Company,1974.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部