期刊文献+

面向安全服务重组多目标优化的粒子群遗传算法

Multi-objective Optimization GAPSO Arithmetic for Security Service Reconfiguration
下载PDF
导出
摘要 遗传算法具有快速随机的全局搜索能力,但局部搜索能力差,易陷入早熟收敛,迭代效率低.粒子群算法采用速度——位置模型,可以较快收敛到指定精度.将粒子群算法与遗传算法融合,采用多目标遗传算法得出初步的优化结果,并将其作为粒子,利用粒子群算法强化局部搜索,加快收敛速度,仿真结果证明了该算法的优越性.在CSSM对底层安全服务的重组时利用粒子群和遗传算法的结合(GAPSO),能够提高效率. Genetic algorithm can perform global searching rapidly and stochastically but for local searching it is not apt because it is easy to converge prematurely, thus leading to a low efficiency of iteration. Particle swarm algorithm adopts a velocity-position model and converges quickly to the designated precision. This algorithm is a combination of genetic algorithm and particle swarm optimization (GAPS, O), in which multiple-objective genetic algorithm is adopted to get primary optimized results, treated as particles. It is then applied to the enhancing of local searching and speed convergence. Its superiority is demonstrated by the simulation results. For application, GAPSO is employed in security service reconfiguration and the results prove that it can improve efficiency.
作者 马琳
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2007年第5期140-144,共5页 Journal of Central South University of Forestry & Technology
关键词 软件工程 安全服务重组 多目标优化 粒子群算法 遗传算法 software engineering security service reconfiguration multi-objective optimization particle swarm optimization genetic algorithm
  • 相关文献

参考文献12

  • 1[1]Holland T H.Adaptation in natural and artificial system[M].Michigan:The University of Michigan Press,1975.
  • 2[2]Schaffer J D.Multiple objective optimization with vector evaluated genetic algorithma[C]//Proc.of International Conference on Genetic Algorithms and Their Applications,1985.93-100.
  • 3丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合[J].计算机研究与发展,2003,40(9):1351-1356. 被引量:287
  • 4[4]Kennedy J,Eberhart R C.Particle swarm optimization[C].In:Proceedings of IEEE International conference on Neural Networks.Perth,Australia:[s.n.],1995.1942-1948.
  • 5[5]Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948.
  • 6[6]Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources[C]//Proc.Congress on Evolutionary Computation 2001.Piscataway,NJ:IEEE Press,2001.81-86.
  • 7郜庆路,罗欣,杨叔子.基于蚂蚁算法的混流车间动态调度研究[J].计算机集成制造系统-CIMS,2003,9(6):456-459. 被引量:52
  • 8[8]Reinelt G.TSPLIBa traveling salesman problem library[J].ORSA Journal on Computing,1991,3(4):376-384.
  • 9康松林,费洪晓,施荣华,裘芳敏.网络应用软件监控系统管理代理的设计与实现[J].中南林学院学报,2006,26(2):115-119. 被引量:4
  • 10刘完芳,常卫东.流媒体加密技术研究[J].中南林学院学报,2006,26(6):119-122. 被引量:2

二级参考文献60

共引文献342

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部