期刊文献+

随机延时细胞神经网络的几乎必然指数稳定性 被引量:1

Almost Sure Exponential Stability of the Stochastic Delayed Cellular Neural Networks
下载PDF
导出
摘要 依据细胞神经网络的输出函数特征,将状态空间分解成子区域,研究了一类随机延时细胞神经网络在噪声环境下的几乎必然指数稳定性.当细胞神经网络模型的扰动项满足Lipschitz条件时,得到一些几乎必然指数稳定的代数准则.如果细胞神经网络的平衡点是子区域的内点,并且与这个平衡点相关的矩阵有一个稳定度使扰动稳定,则细胞神经网络的平衡点仍保持指数稳定的性质.所有结果只需计算网络的平衡点与矩阵的特征值. Almost sure exponential stability of a class of stochastic delayed cellular neural networks in the noise environment is researched by dividing the state space into sub-regions according to the characters of output functions of the network. Some algebraic criterion of almost sure exponential stability are obtained when the disturbance term of the network satisfies the Lipschitz condition. The equilibrium point of the network still remains the exponential stability if the equilibrium point is a interior point of the sub-region and the matrix related to the equilibrium point has a stable degree stabilize the perturba- tion. The equilibrium point of the network and the eigenvalue is only need to get the result.
作者 周立群
出处 《天津师范大学学报(自然科学版)》 CAS 2007年第4期34-37,42,共5页 Journal of Tianjin Normal University:Natural Science Edition
关键词 随机延时细胞神经网络 布朗运动 几乎必然指数稳定性 stochastic delayed cellular neural networks Brownian motion almost sure exponential stability
  • 相关文献

参考文献1

二级参考文献8

  • 1Mao X,Stochastics Stochastics Reports,1997年,60卷,135页
  • 2Mao X,IEEE Trans Automat Control,1996年,41卷,442页
  • 3Wang K,IEEE Trans Circuits Syst I Fundamental Theory Appli,1996年,43卷,517页
  • 4Ye H,IEEE Trans Circuits Syst I Fundamental Theory Appli,1996年,43卷,532页
  • 5Liao X X,Neural Parallel Scientific Computations,1996年,4卷,205页
  • 6Liao X X,Stoch Process Their Appl,1996年,14卷,165页
  • 7Yang H,IEEE Trans Neural Networks,1994年,5卷,719页
  • 8Mao X,Exponential Stability of Stochastic Differential Equations,1994年

共引文献6

同被引文献16

  • 1周进,刘曾荣,向兰.具有时滞的双向联想记忆(BAM)的神经网络的全局动力学行为[J].应用数学和力学,2005,26(3):300-308. 被引量:7
  • 2KOSKO B.Bidirectional associative memories[J].IEEE Transactions on Systems,Man and Cybernetics,1988,18(10):49-60.
  • 3KOSKO B.Unsupervised learning in noise[J].IEEE Transactions on Neural Networks,1991,1(1):44-57.
  • 4KOSKO B.Neural Networks and Fuzzy Systems—A Dynamical System Approach to Machine Intelligence[M].Englewood Cliffs,NJ:Prentice-Hall,1992.
  • 5KOSKO B.Structural stability of unsupervised learning in feedback neural networks[J].IEEE Transactions on Automatic Control,1991,36(5):785-790.
  • 6LIAO X F,WONG K W.Convergence dynamics of hybrid bidirectional associative memory neural networks with distributed delays[J].Phys Lett,2003,A(318):55-64.
  • 7ZHANG Y,HENG P A,LEUNG S K.Convergence analysis of cellular neural networks[J].IEEE Transactions on Circuits and Sys-tems,2001,48(6):680-687.
  • 8YANG Y Q,CAO J.Stability and periodicity in delayed cellular neural networks with impulsive effects[J].Nonlinear Analysis:RealWorld Applications,2007,8(2):362-374.
  • 9ZHOU L Q.On the global dissipativity of a class of cellular neural networks with multipantograph delays[J].Advances in ArtificialNeural Systems,2011(10):1155-1161.
  • 10LIU Y K.Asymptotic behavior of functional-differential equations with priporyial time delays[J].Eur J Appl Math,1996,7(1):1-30.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部