期刊文献+

基于逃逸时间算法的三维分形图绘制方法

Rendering 3D Fractals Based on the Escape-Time Algorithm
下载PDF
导出
摘要 使用经典的逃逸时间算法通常得到的是黑白的或缺乏颜色过渡的Mandelbrot集或Julia集。通过定义色彩控制球,给出一种绘制三维分形图的方法。对于确定区域内的迭代初始点,首先将动力系统的迭代逃逸点或非逃逸点映射到色彩控制球内,然后计算映射点到球心的距离;以该距离为参数,经由色彩控制函数确定迭代初始点的色彩;再以该色彩绘制迭代初始点域中的嵌入体表面,从而得到具有伪三维效果的分形图。 The Mandelbrot-set and Julia-set are two classical 2D fractals generated by the Escape-Time Algorithm (ETA) with simple color patterns, In this paper, we present a novel method to render colorful 3D fractals based on an improved ETA and Color-Control Sphere (CCS), In the method, each point in parameter domain, to be called parameter points, is judged if it is an escaped point or not firstly, under the governing of discrete dynamic system, The point is then mapped to a mapped-point in CCS and the distance between the mapped-point and center point of CCS is evaluated, Subsequently, a color for rendering the parameter point is can be obtained by employing a predefined color-control function system with respect to the distance. All of the surface points, which are taken as a set of initial points of a dynamic system, of arbitrary shape embedded in the parameter domain are rendered with their corresponding colors, As a result, a pseudo-3D fractal can be archived on the surface of the embedded shape.
作者 张惠进
出处 《工程图学学报》 CSCD 北大核心 2007年第6期35-39,共5页 Journal of Engineering Graphics
关键词 计算机应用 计算机图形学 逃逸时间算法 分形图形 离散动力系统 computer application computer graphics escaped-time algorithm fractal rendering discrete dynamical system
  • 相关文献

参考文献8

二级参考文献14

  • 1[4]Lyubich M Yu. The Dynamics of Rational Transforms: The Topological Picture[J]. Russian Math.Surveys, 1986,41:
  • 2[5]Eremenko, Lyubich M Yu. The Danamics of Analytic Transformations[J]. Leningrad Math. J. , 1990,1(3):
  • 3[6]品以辇.复解析动力系统[M].北京:科学出版社,1995.
  • 4[7]李忠.复解析动力系统[M].中国数学发展的若干主攻方向(第3部分).江苏:江苏教育出版社,1994.
  • 5[9]Dubuc S. Approximations of Fractal Sets[J]. J. Comput. Appl. Math., 1990,29:79~89.
  • 6[1]Havin V P, Nikolski N K(Eds). Linear and Complex Analysis Problem Book 3, Part Ⅱ [M]. New York: Springer-verlag, 1994.
  • 7[2]Blanchard P. Complex Analytic Dynamics On the Riemann Sphere[J]. Bull. Amer. Math. Soc. , 1984,11:
  • 8[3]Milnor J. Dynamics in One Complex Variable: Introductory Lectures[J]. SUNY Stony Brook Institute for Mathematical Sciences. 1990,5:
  • 9唐荣锡,计算机图形学教程,1990年
  • 10胡瑞安,分形的计算机图象及其应用,1995年

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部